Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haim Y. Cohen is active.

Publication


Featured researches published by Haim Y. Cohen.


Nature | 2003

Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

Konrad T. Howitz; Kevin J. Bitterman; Haim Y. Cohen; Dudley W. Lamming; Siva Lavu; Jason G. Wood; Robert E. Zipkin; Phuong Chung; Anne Kisielewski; Li-Li Zhang; Brandy Scherer; David A. Sinclair

In diverse organisms, calorie restriction slows the pace of ageing and increases maximum lifespan. In the budding yeast Saccharomyces cerevisiae, calorie restriction extends lifespan by increasing the activity of Sir2 (ref. 1), a member of the conserved sirtuin family of NAD+-dependent protein deacetylases. Included in this family are SIR-2.1, a Caenorhabditis elegans enzyme that regulates lifespan, and SIRT1, a human deacetylase that promotes cell survival by negatively regulating the p53 tumour suppressor. Here we report the discovery of three classes of small molecules that activate sirtuins. We show that the potent activator resveratrol, a polyphenol found in red wine, lowers the Michaelis constant of SIRT1 for both the acetylated substrate and NAD+, and increases cell survival by stimulating SIRT1-dependent deacetylation of p53. In yeast, resveratrol mimics calorie restriction by stimulating Sir2, increasing DNA stability and extending lifespan by 70%. We discuss possible evolutionary origins of this phenomenon and suggest new lines of research into the therapeutic use of sirtuin activators.


Nature | 2012

The sirtuin SIRT6 regulates lifespan in male mice

Yariv Kanfi; Shoshana Naiman; Gail Amir; Victoria Peshti; Guy Zinman; Liat Nahum; Ziv Bar-Joseph; Haim Y. Cohen

The significant increase in human lifespan during the past century confronts us with great medical challenges. To meet these challenges, the mechanisms that determine healthy ageing must be understood and controlled. Sirtuins are highly conserved deacetylases that have been shown to regulate lifespan in yeast, nematodes and fruitflies. However, the role of sirtuins in regulating worm and fly lifespan has recently become controversial. Moreover, the role of the seven mammalian sirtuins, SIRT1 to SIRT7 (homologues of the yeast sirtuin Sir2), in regulating lifespan is unclear. Here we show that male, but not female, transgenic mice overexpressing Sirt6 (ref. 4) have a significantly longer lifespan than wild-type mice. Gene expression analysis revealed significant differences between male Sirt6-transgenic mice and male wild-type mice: transgenic males displayed lower serum levels of insulin-like growth factor 1 (IGF1), higher levels of IGF-binding protein 1 and altered phosphorylation levels of major components of IGF1 signalling, a key pathway in the regulation of lifespan. This study shows the regulation of mammalian lifespan by a sirtuin family member and has important therapeutic implications for age-related diseases.


Molecular Cell | 2004

Acetylation of the C terminus of Ku70 by CBP and PCAF controls bax-mediated apoptosis

Haim Y. Cohen; Siva Lavu; Kevin J. Bitterman; Brian Hekking; Thomas A Imahiyerobo; Christine M. Miller; Roy A. Frye; Hidde L. Ploegh; Benedikt M. Kessler; David A. Sinclair

Apoptosis is a key tumor suppression mechanism that can be initiated by activation of the proapoptotic factor Bax. The Ku70 DNA end-joining protein has recently been shown to suppress apoptosis by sequestering Bax from mitochondria. The mechanism by which Bax is regulated remains unknown. Here, we identify eight lysines in Ku70 that are targets for acetylation in vivo. Five of these, K539, K542, K544, K533, and K556, lie in the C-terminal linker domain of Ku70 adjacent to the Bax interaction domain. We show that CBP and PCAF efficiently acetylate K542 in vitro and associate with Ku70 in vivo. Mimicking acetylation of K539 or K542 or treating cells with deacetylase inhibitors abolishes the ability of Ku70 to suppress Bax-mediated apoptosis. We demonstrate that increased acetylation of Ku70 disrupts the Ku70-Bax interaction and coincides with cytoplasmic accumulation of CBP. These results shed light on the role of acetyltransferases as tumor suppressors.


FEBS Letters | 2008

Regulation of SIRT6 protein levels by nutrient availability

Yariv Kanfi; Victoria Peshti; Yosi M. Gozlan; Moran Rathaus; Reuven Gil; Haim Y. Cohen

Sirtuins have been shown to regulate life‐span in response to nutritional availability. We show here that levels of the mammalian sirtuin, SIRT6, increased upon nutrient deprivation in cultured cells, in mice after fasting, and in rats fed a calorie‐restricted diet. The increase in SIRT6 levels is due to stabilization of SIRT6 protein, and not via an increase in SIRT6 transcription. In addition, p53 positively regulates SIRT6 protein levels under standard growth conditions but has no role in the nutrient‐dependent regulation of SIRT6. These observations imply that at least two sirtuins are involved in regulation of life‐span by nutrient availability.


Aging Cell | 2010

SIRT6 protects against pathological damage caused by diet-induced obesity

Yariv Kanfi; Victoria Peshti; Reuven Gil; Shoshana Naiman; Liat Nahum; Eran Levin; Noga Kronfeld-Schor; Haim Y. Cohen

The NAD+‐dependent SIRT6 deacetylase is a therapeutic candidate against the emerging metabolic syndrome epidemic. SIRT6, whose deficiency in mice results in premature aging phenotypes and metabolic defects, was implicated in a calorie restriction response that showed an opposite set of phenotypes from the metabolic syndrome. To explore the role of SIRT6 in metabolic stress, wild type and transgenic (TG) mice overexpressing SIRT6 were fed a high fat diet. In comparison to their wild‐type littermates, SIRT6 TG mice accumulated significantly less visceral fat, LDL‐cholesterol, and triglycerides. TG mice displayed enhanced glucose tolerance along with increased glucose‐stimulated insulin secretion. Gene expression analysis of adipose tissue revealed that the positive effect of SIRT6 overexpression is associated with down regulation of a selective set of peroxisome proliferator‐activated receptor‐responsive genes, and genes associated with lipid storage, such as angiopoietin‐like protein 4, adipocyte fatty acid‐binding protein, and diacylglycerol acyltransferase 1, which were suggested as potential targets for drugs to control metabolic syndrome. These results demonstrate a protective role for SIRT6 against the metabolic consequences of diet‐induced obesity and suggest a potentially beneficial effect of SIRT6 activation on age‐related metabolic diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase

Haim Y. Cohen; David A. Sinclair

The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The “type II” pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G2/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G2/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by ≈300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.


Nature Chemical Biology | 2013

Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide

Kathrin Schmeisser; Johannes Mansfeld; Doreen Kuhlow; Sandra Weimer; Steffen Priebe; Ines Heiland; Marc Birringer; Marco Groth; Alexandra Segref; Yariv Kanfi; Nathan L. Price; Sebastian Schmeisser; Stefan Schuster; Andreas F.H. Pfeiffer; Reinhard Guthke; Matthias Platzer; Thorsten Hoppe; Haim Y. Cohen; Kim Zarse; David A. Sinclair; Michael Ristow

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.


Genome Biology | 2014

Mammalian conserved ADAR targets comprise only a small fragment of the human editosome

Yishay Pinto; Haim Y. Cohen; Erez Y. Levanon

BackgroundADAR proteins are among the most extensively studied RNA binding proteins. They bind to their target and deaminate specific adenosines to inosines. ADAR activity is essential, and the editing of a subset of their targets is critical for viability. Recently, a huge number of novel ADAR targets were detected by analyzing next generation sequencing data. Most of these novel editing sites are located in lineage-specific genomic repeats, probably a result of overactivity of editing enzymes, thus masking the functional sites. In this study we aim to identify the set of mammalian conserved ADAR targets.ResultsWe used RNA sequencing data from human, mouse, rat, cow, opossum, and platypus to define the conserved mammalian set of ADAR targets. We found that the conserved mammalian editing sites are surprisingly small in number and have unique characteristics that distinguish them from non-conserved ones. The sites that constitute the set have a distinct genomic distribution, tend to be located in genes encoding neurotransmitter receptors or other synapse related proteins, and have higher editing and expression levels. We also found a high consistency of editing levels of this set within mice strains and between human and mouse. Tight regulation of editing in these sites across strains and species implies their functional importance.ConclusionsDespite the discovery of numerous editing targets, only a small number of them are conserved within mammalian evolution. These sites are extremely highly conserved and exhibit unique features, such as tight regulation, and probably play a pivotal role in mammalian biology.


Cell Death & Differentiation | 2007

Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation

Y Li; Takanori Yokota; Vivian Gama; Tomoyuki Yoshida; Jose A. Gomez; Kinya Ishikawa; Hiroki Sasaguri; Haim Y. Cohen; David A. Sinclair; Hidehiro Mizusawa; Shigemi Matsuyama

Polyglutamine (polyQ) diseases, such as Huntingtons disease and Machado–Joseph disease (MJD), are caused by gain of toxic function of abnormally expanded polyQ tracts. Here, we show that expanded polyQ of ataxin-3 (Q79C), a gene that causes MJD, stimulates Ku70 acetylation, which in turn dissociates the proapoptotic protein Bax from Ku70, thereby promoting Bax activation and subsequent cell death. The Q79C-induced cell death was significantly blocked by Ku70 or Bax-inhibiting peptides (BIPs) designed from Ku70. Furthermore, expression of SIRT1 deacetylase and the addition of a SIRT1 agonist, resveratrol, reduced Q79C toxicity. In contrast, mimicking acetylation of Ku70 abolished the ability of Ku70 to suppress Q79C toxicity. These results indicate that Bax and Ku70 acetylation play important roles in Q79C-induced cell death, and that BIP may be useful in the development of therapeutics for polyQ diseases.


Cell Reports | 2013

Multiple Regulatory Layers of SREBP1/2 by SIRT6

Sivan Elhanati; Yariv Kanfi; Alexander Varvak; Asael Roichman; Ilana Carmel-Gross; Shaul Barth; Gilad Gibor; Haim Y. Cohen

The NAD(+)-dependent protein deacetylase SIRT6 regulates genome stability, cancer, and lifespan. Mice overexpressing SIRT6 (MOSES) have lower low-density lipoprotein cholesterol levels and are protected against the physiological damage of obesity. Here, we examined the role of SIRT6 in cholesterol regulation via the lipogenic transcription factors SREBP1 and SREBP2, and AMP-activated protein kinase (AMPK). We show that SIRT6 represses SREBP1 and SREBP2 by at least three mechanisms. First, SIRT6 represses the transcription levels of SREBP1/SREBP2 and that of their target genes. Second, SIRT6 inhibits the cleavage of SREBP1/SREBP2 into their active forms. Third, SIRT6 activates AMPK by increasing the AMP/ATP ratio, which promotes phosphorylation and inhibition of SREBP1 by AMPK. Reciprocally, the expression of miR33a and miR33b from the introns of SREBP2 and SREBP1, respectively, represses SIRT6 levels. Together, these findings explain the mechanism underlying the improved cholesterol homeostasis in MOSES mice, revealing a relationship between fat metabolism and longevity.

Collaboration


Dive into the Haim Y. Cohen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge