Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yariv Kanfi is active.

Publication


Featured researches published by Yariv Kanfi.


Nature | 2012

The sirtuin SIRT6 regulates lifespan in male mice

Yariv Kanfi; Shoshana Naiman; Gail Amir; Victoria Peshti; Guy Zinman; Liat Nahum; Ziv Bar-Joseph; Haim Y. Cohen

The significant increase in human lifespan during the past century confronts us with great medical challenges. To meet these challenges, the mechanisms that determine healthy ageing must be understood and controlled. Sirtuins are highly conserved deacetylases that have been shown to regulate lifespan in yeast, nematodes and fruitflies. However, the role of sirtuins in regulating worm and fly lifespan has recently become controversial. Moreover, the role of the seven mammalian sirtuins, SIRT1 to SIRT7 (homologues of the yeast sirtuin Sir2), in regulating lifespan is unclear. Here we show that male, but not female, transgenic mice overexpressing Sirt6 (ref. 4) have a significantly longer lifespan than wild-type mice. Gene expression analysis revealed significant differences between male Sirt6-transgenic mice and male wild-type mice: transgenic males displayed lower serum levels of insulin-like growth factor 1 (IGF1), higher levels of IGF-binding protein 1 and altered phosphorylation levels of major components of IGF1 signalling, a key pathway in the regulation of lifespan. This study shows the regulation of mammalian lifespan by a sirtuin family member and has important therapeutic implications for age-related diseases.


FEBS Letters | 2008

Regulation of SIRT6 protein levels by nutrient availability

Yariv Kanfi; Victoria Peshti; Yosi M. Gozlan; Moran Rathaus; Reuven Gil; Haim Y. Cohen

Sirtuins have been shown to regulate life‐span in response to nutritional availability. We show here that levels of the mammalian sirtuin, SIRT6, increased upon nutrient deprivation in cultured cells, in mice after fasting, and in rats fed a calorie‐restricted diet. The increase in SIRT6 levels is due to stabilization of SIRT6 protein, and not via an increase in SIRT6 transcription. In addition, p53 positively regulates SIRT6 protein levels under standard growth conditions but has no role in the nutrient‐dependent regulation of SIRT6. These observations imply that at least two sirtuins are involved in regulation of life‐span by nutrient availability.


Aging Cell | 2010

SIRT6 protects against pathological damage caused by diet-induced obesity

Yariv Kanfi; Victoria Peshti; Reuven Gil; Shoshana Naiman; Liat Nahum; Eran Levin; Noga Kronfeld-Schor; Haim Y. Cohen

The NAD+‐dependent SIRT6 deacetylase is a therapeutic candidate against the emerging metabolic syndrome epidemic. SIRT6, whose deficiency in mice results in premature aging phenotypes and metabolic defects, was implicated in a calorie restriction response that showed an opposite set of phenotypes from the metabolic syndrome. To explore the role of SIRT6 in metabolic stress, wild type and transgenic (TG) mice overexpressing SIRT6 were fed a high fat diet. In comparison to their wild‐type littermates, SIRT6 TG mice accumulated significantly less visceral fat, LDL‐cholesterol, and triglycerides. TG mice displayed enhanced glucose tolerance along with increased glucose‐stimulated insulin secretion. Gene expression analysis of adipose tissue revealed that the positive effect of SIRT6 overexpression is associated with down regulation of a selective set of peroxisome proliferator‐activated receptor‐responsive genes, and genes associated with lipid storage, such as angiopoietin‐like protein 4, adipocyte fatty acid‐binding protein, and diacylglycerol acyltransferase 1, which were suggested as potential targets for drugs to control metabolic syndrome. These results demonstrate a protective role for SIRT6 against the metabolic consequences of diet‐induced obesity and suggest a potentially beneficial effect of SIRT6 activation on age‐related metabolic diseases.


Nature Chemical Biology | 2013

Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide

Kathrin Schmeisser; Johannes Mansfeld; Doreen Kuhlow; Sandra Weimer; Steffen Priebe; Ines Heiland; Marc Birringer; Marco Groth; Alexandra Segref; Yariv Kanfi; Nathan L. Price; Sebastian Schmeisser; Stefan Schuster; Andreas F.H. Pfeiffer; Reinhard Guthke; Matthias Platzer; Thorsten Hoppe; Haim Y. Cohen; Kim Zarse; David A. Sinclair; Michael Ristow

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.


Cell Reports | 2013

Multiple Regulatory Layers of SREBP1/2 by SIRT6

Sivan Elhanati; Yariv Kanfi; Alexander Varvak; Asael Roichman; Ilana Carmel-Gross; Shaul Barth; Gilad Gibor; Haim Y. Cohen

The NAD(+)-dependent protein deacetylase SIRT6 regulates genome stability, cancer, and lifespan. Mice overexpressing SIRT6 (MOSES) have lower low-density lipoprotein cholesterol levels and are protected against the physiological damage of obesity. Here, we examined the role of SIRT6 in cholesterol regulation via the lipogenic transcription factors SREBP1 and SREBP2, and AMP-activated protein kinase (AMPK). We show that SIRT6 represses SREBP1 and SREBP2 by at least three mechanisms. First, SIRT6 represses the transcription levels of SREBP1/SREBP2 and that of their target genes. Second, SIRT6 inhibits the cleavage of SREBP1/SREBP2 into their active forms. Third, SIRT6 activates AMPK by increasing the AMP/ATP ratio, which promotes phosphorylation and inhibition of SREBP1 by AMPK. Reciprocally, the expression of miR33a and miR33b from the introns of SREBP2 and SREBP1, respectively, represses SIRT6 levels. Together, these findings explain the mechanism underlying the improved cholesterol homeostasis in MOSES mice, revealing a relationship between fat metabolism and longevity.


Nucleic Acids Research | 2013

SIRT6 exhibits nucleosome-dependent deacetylase activity

Reuven Gil; Shaul Barth; Yariv Kanfi; Haim Y. Cohen

The SIRT6 deacetylase is a key regulator of mammalian genome stability, metabolism and lifespan. Previous studies indicated that SIRT6 exhibits poor deacetylase activity in vitro. Here, we explored the specific conditions that allow SIRT6 to function as a significant deacetylase. We show that SIRT6 associates with the nucleosome and deacetylates histones H3 and H4 when they are packaged as nucleosomes, but not as free histones. In contrast, SIRT1 shows the opposite characteristics. Thus, our results show that SIRT6 activity is nucleosome dependent, and suggest that its binding to the nucleosome might convert it into an active structure.


Experimental Cell Research | 2015

Sirtuin 6 protects the heart from hypoxic damage.

Anna Maksin-Matveev; Yariv Kanfi; Edith Hochhauser; Ahuva Isak; Haim Y. Cohen; Asher Shainberg

Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension.


Nature Methods | 2013

ExpressionBlast: mining large, unstructured expression databases

Guy Zinman; Shoshana Naiman; Yariv Kanfi; Haim Y. Cohen; Ziv Bar-Joseph

The uniform processing of the data allows users to compare a query from their own new experiments (Fig. 1c) with GEO data from the same or different species, using one of several supported distance functions including Euclidean, correlation and negative correlation (Supplementary Fig. 2). The resulting matches are displayed as a heat map and analyzed to determine the significance of the match (Fig. 1d). Additional information for matches, including publication abstracts, significant common keywords selected from a predefined compendium of words (Supplementary Results) and enrichment for GO categories, is also provided (Fig. 1e). For cross-species comparisons, we use ExpressionBlast: mining large, unstructured expression databases To the Editor: The amount of gene expression data deposited in public repositories has grown exponentially over the last decade (Supplementary Fig. 1). Specifically, Gene Expression Omnibus (GEO)1 is one of largest expression-data repositories (Supplementary Table 1), containing hundreds of thousands of microarray and RNA-seq experiment results grouped into tens of thousands of series. Although accessible, data deposited in GEO are not well organized. Even among data sets for a single species there are many different platforms with different probe identifiers, different value scales and very limited annotations of the condition profiled by each array. Current methods for using GEO data to study signaling and other cellular networks either do not scale or cannot fully use the available information (Supplementary Table 2 and Supplementary Results). To enable quer ies of such l arge expression databases, we developed ExpressionBlast (http://www.expression. cs.cmu.edu/): a computational method that uses automated text analysis to identify and merge replicates and determine the type of each array in the series (treatment or control; Fig. 1a and Supplementary Methods) . Using this information, ExpressionBlast uniformly processes expression data sets in GEO across all experiments, species and platforms. This is achieved by standardizing the data in terms of gene identifiers, the meaning of the expression values (log ratios) and the distribution of these values (Fig. 1b and Supplementary Methods). Our processing steps achieved a high accuracy in identifying replicates and treatment control cases (Supplementary Results and Supplementary Table 3). We applied these processing steps to arrays from more than 900,000 individual samples collected from >40,000 studies in GEO (new series are updated on a weekly basis), which allowed us to create, to our knowledge, the largest collection of computationally annotated expression data currently available (Supplementary Results and Supplementary Table 4). rep3 rep1


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016

SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan.

Asael Roichman; Yariv Kanfi; Renana Glazz; Shoshana Naiman; Uri Amit; Natalie Landa; Simon Tinman; Ilan Stein; Eli Pikarsky; Jonathan Leor; Haim Y. Cohen

The extension in human lifespan in the last century results in a significant increase in incidence of age related diseases. It is therefore crucial to identify key factors that control elderly healthspan. Similar to dietary restriction, mice overexpressing the NAD+ dependent protein deacylase SIRT6 (MOSES) live longer and have reduced IGF-1 levels. However, it is as yet unknown whether SIRT6 also affects various healthspan parameters. Here, a range of age related phenotypes was evaluated in MOSES mice. In comparison to their wild-type (WT) littermates, old MOSES mice showed amelioration of a variety of age-related disorders, including: improved glucose tolerance, younger hormonal profile, reduced age-related adipose inflammation and increased physical activity. The increased activity was accompanied with increased muscle AMP-activated protein kinase (AMPK) activity. Altogether, these results indicate that overexpression of SIRT6 in mice retards important aspects of the aging process and suggest SIRT6 to be a potential therapeutic target for the treatment of a set of age-related disorders.


PLOS ONE | 2017

Characterization of physiological defects in adult SIRT6-/- mice

Victoria Peshti; Alexey Obolensky; Liat Nahum; Yariv Kanfi; Moran Rathaus; Maytal Avraham; Simon Tinman; Fredrick W. Alt; Eyal Banin; Haim Y. Cohen

The NAD+-dependent SIRT6 deacetylase was shown to be a major regulator of lifespan and healthspan. Mice deficient for SIRT6 develop a premature aging phenotype and metabolic defects, and die before four weeks of age. Thus, the effect of SIRT6 deficiency in adult mice is unknown. Here we show that SIRT6-/- mice in mixed 129/SvJ/BALB/c background reach adulthood, allowing examination of SIRT6-related metabolic and developmental phenotypes in adult mice. In this mixed background, at 200 days of age, more than 80% of the female knock-out mice were alive whereas only 10% of male knock-out mice survived. In comparison to their wild-type littermates, SIRT6 deficient mice have reduced body weight, increased glucose uptake and exhibit an age-dependent progressive impairment of retinal function accompanied by thinning of retinal layers. Together, these results demonstrate a role for SIRT6 in metabolism and age-related ocular changes in adult mice and suggest a gender specific regulation of lifespan by SIRT6.

Collaboration


Dive into the Yariv Kanfi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Obolensky

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge