Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haipeng Gong is active.

Publication


Featured researches published by Haipeng Gong.


Nature | 2010

Structure of a fucose transporter in an outward-open conformation

Shangyu Dang; Linfeng Sun; Yongjian Huang; Feiran Lu; Yufeng Liu; Haipeng Gong; Jiawei Wang; Nieng Yan

The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured. Here we report the crystal structure of FucP at 3.1 Å resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.


Nucleic Acids Research | 2016

A deep learning framework for modeling structural features of RNA-binding protein targets

Sai Zhang; Jingtian Zhou; Hailin Hu; Haipeng Gong; Ligong Chen; Chao Cheng; Jianyang Zeng

RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp.


Cell Research | 2013

Analysis of the selectivity filter of the voltage-gated sodium channel NavRh

Xu Zhang; Mengdie Xia; Yang Li; Huihui Liu; Xin Jiang; Wenlin Ren; Jianping Wu; Paul G. DeCaen; Feng(郁锋) Yu; Sheng Huang; Jianhua(何建华) He; David E. Clapham; Nieng Yan; Haipeng Gong

NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels. To understand the ion-permeation mechanism of Nav channels, we combined molecular dynamics simulation, structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh, a marine bacterial NaChBac ortholog. Two Na+ binding sites are identified in the selectivity filter (SF) in our simulations: The extracellular Na+ ion first approaches site 1 constituted by the side groups of Ser181 and Glu183, and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyl oxygens of Leu179 and Thr178. In contrast, Ca2+ ions are prone to being trapped by Glu183 at site 1, which then blocks the entrance of both Na+ and Ca2+ to the vestibule of the SF. In addition, Na+ permeates through the selective filter in an asymmetrical manner, a feature that resembles that of the mammalian Nav orthologs. The study reported here provides insights into the mechanism of ion selectivity on Na+ over Ca2+ in mammalian Nav channels.


Biophysical Journal | 2013

The Mechanism of Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels Based on Molecular Dynamics Simulation

Mengdie Xia; Huihui Liu; Yang Li; Nieng Yan; Haipeng Gong

Voltage-gated sodium (Nav) channels and their Na⁺/K⁺ selectivity are of great importance in the mammalian neuronal signaling. According to mutational analysis, the Na⁺/K⁺ selectivity in mammalian Nav channels is mainly determined by the Lys and Asp/Glu residues located at the constriction site within the selectivity filter. Despite successful molecular dynamics simulations conducted on the prokaryotic Nav channels, the lack of Lys at the constriction site of prokaryotic Nav channels limits how much can be learned about the Na⁺/K⁺ selectivity in mammalian Nav channels. In this work, we modeled the mammalian Nav channel by mutating the key residues at the constriction site in a prokaryotic Nav channel (NavRh) to its mammalian counterpart. By simulating the mutant structure, we found that the Na⁺ preference in mammalian Nav channels is collaboratively achieved by the deselection from Lys and the selection from Asp/Glu within the constriction site.


Biophysical Journal | 2010

Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

Haipeng Gong; Karl F. Freed

Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the proteins surface can be stabilizing when the charge separation is < or =4 A.


Biochimica et Biophysica Acta | 2013

Increasing βB1-crystallin sensitivity to proteolysis caused by the congenital cataract-microcornea syndrome mutation S129R

Sha Wang; Wei-Jie Zhao; Huihui Liu; Haipeng Gong; Yong-Bin Yan

Congenital hereditary cataract, which is mainly caused by the deposition of crystallins in light-scattering particles, is one of the leading causes of newborn blindness in human beings. Recently, an autosomal dominant congenital cataract-microcornea syndrome in a Chinese family has been associated with the S129R mutation in βB1-crystallin. To investigate the underlying molecular mechanism, we examined the effect of the mutation on βB1-crystallin structure and thermal stability. Biophysical experiments indicated that the mutation impaired the oligomerization of βB1-crystallin and shifted the dimer-monomer equilibrium to monomer. Molecular dynamic simulations revealed that the mutation altered the hydrogen-bonding network and hydrophobic interactions in the subunit interface of the dimeric protein, which resulted in the opening of the tightly associated interacting sites to allow the infiltration of the solvent molecules into the interface. Despite the disruption of βB1-crystallin assembly, the thermal stability of βB1-crystallin was increased by the mutation accompanied by the reduction of thermal aggregation at high temperatures. Further analysis indicated that the mutation significantly increased the sensitivity of βB1-crystallin to trypsin hydrolysis. The digested fragments of the mutant were prone to aggregate and unable to protect βA3-crystallin against aggregation. These results indicated that the thermal stability-beneficial mutation S129R in βB1-crystallin provided an excellent model for discovering molecular mechanisms apart from solubility and stability. Our results also highlighted that the increased sensitivity of mutated crystallins towards proteases might play a crucial role in the pathogenesis of congenital hereditary cataract and associated syndrome.


Biophysical Journal | 2013

A Novel Implicit Solvent Model for Simulating the Molecular Dynamics of RNA

Yufeng Liu; Esmael J. Haddadian; Tobin R. Sosnick; Karl F. Freed; Haipeng Gong

Although molecular dynamics simulations can be accelerated by more than an order of magnitude by implicitly describing the influence of the solvent with a continuum model, most currently available implicit solvent simulations cannot robustly simulate the structure and dynamics of nucleic acids. The difficulties become exacerbated especially for RNAs, suggesting the presence of serious physical flaws in the prior continuum models for the influence of the solvent and counter ions on the nucleic acids. We present a novel, to our knowledge, implicit solvent model for simulating nucleic acids by combining the Langevin-Debye model and the Poisson-Boltzmann equation to provide a better estimate of the electrostatic screening of both the water and counter ions. Tests of the model involve comparisons of implicit and explicit solvent simulations for three RNA targets with 20, 29, and 75 nucleotides. The model provides reasonable agreement with explicit solvent simulations, and directions for future improvement are noted.


Biophysical Journal | 2012

Chaperone-Like Effect of the Linker on the Isolated C-Terminal Domain of Rabbit Muscle Creatine Kinase

Zhe Chen; Xiang-Jun Chen; Mengdie Xia; Hua-Wei He; Sha Wang; Huihui Liu; Haipeng Gong; Yong-Bin Yan

Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.


Biophysical Journal | 2013

Exploring the pH-Dependent Substrate Transport Mechanism of FocA Using Molecular Dynamics Simulation

Xiaoying Lv; Huihui Liu; Meng Ke; Haipeng Gong

FocA belongs to the formate-nitrate transporter family and plays an essential role in the export and uptake of formate in organisms. According to the available crystal structures, the N-terminal residues of FocA are structurally featureless at physiological conditions but at reduced pH form helices to harbor the cytoplasmic entrance of the substrate permeation pathway, which apparently explains the cessation of electrical signal observed in electrophysiological experiments. In this work, we found by structural analysis and molecular dynamics simulations that those N-terminal helices cannot effectively preclude the substrate permeation. Equilibrium simulations and thermodynamic calculations suggest that FocA is permeable to both formate and formic acid, the latter of which is transparent to electrophysiological studies as an electrically neutral species. Hence, the cease of electrical current at acidic pH may be caused by the change of the transported substrate from formate to formic acid. In addition, the mechanism of formate export at physiological pH is discussed.


Biophysical Journal | 2015

Protonation of Glu135 Facilitates the Outward-to-Inward Structural Transition of Fucose Transporter

Yufeng Liu; Meng Ke; Haipeng Gong

Major facilitator superfamily (MFS) transporters typically need to alternatingly sample the outward-facing and inward-facing conformations, in order to transport the substrate across membrane. To understand the mechanism, in this work, we focused on one MFS member, the L-fucose/H(+) symporter (FucP), whose crystal structure exhibits an outward-open conformation. Previous experiments imply several residues critical to the substrate/proton binding and structural transition of FucP, among which Glu(135), located in the periplasm-accessible vestibule, is supposed as being involved in both proton translocation and conformational change of the protein. Here, the structural transition of FucP in presence of substrate was investigated using molecular-dynamics simulations. By combining the equilibrium and accelerated simulations as well as thermodynamic calculations, not only was the large-scale conformational change from the outward-facing to inward-facing state directly observed, but also the free energy change during the structural transition was calculated. The simulations confirm the critical role of Glu(135), whose protonation facilitates the outward-to-inward structural transition both by energetically favoring the inward-facing conformation in thermodynamics and by reducing the free energy barrier along the reaction pathway in kinetics. Our results may help the mechanistic studies of both FucP and other MFS transporters.

Collaboration


Dive into the Haipeng Gong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge