Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nieng Yan is active.

Publication


Featured researches published by Nieng Yan.


Science | 2012

Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors

Dong Deng; Chuangye Yan; Xiaojing Pan; Magdy M. Mahfouz; Jiawei Wang; Jian-Kang Zhu; Yigong Shi; Nieng Yan

Wrapped DNA TAL effectors are proteins that bacterial pathogens inject into plant cells that bind to host DNA to activate expression of plant genes. The DNA-binding domain of TAL proteins is composed of tandem repeats within which a repeat-variable diresidue sequence confers nucleotide specificity. Deng et al. (p. 720, published online 5 January) report the structure of the TAL effector dHax3, containing 11.5 repeats, in DNA-free and DNA-bound states, and Mak et al. (p. 716, published online 5 January) report the structure of the PthXo1 TAL effector, containing 22 repeats, bound to its DNA target. Together, the structures reveal the conformational changes involved in DNA binding and provide the structural basis of DNA recognition. Structures show how a virulence factor in a plant pathogen recognizes and binds to host DNA. TAL (transcription activator–like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.


Nature | 2012

Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel

Xu Zhang; Wenlin Ren; Paul G. DeCaen; Chuangye Yan; Xiao Tao; Lin(唐琳) Tang; Jingjing Wang; Kazuya Hasegawa; Takashi Kumasaka; Jianhua(何建华) He; Jiawei Wang; David E. Clapham; Nieng Yan

Voltage-gated sodium (Nav) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Nav channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Nav channels, exemplified by the Na+-selective channel of bacteria (NaChBac), provides a useful model system for structure–function analysis. Here we report the crystal structure of NavRh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 Å resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca2+ resides in the crystal structure. The outer mouth of the Na+ selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that NavRh is in an ‘inactivated’ conformation. Comparison of NavRh with NavAb reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.


Nature Structural & Molecular Biology | 2009

Structural insights into the mechanism of abscisic acid signaling by PYL proteins

Ping Yin; He Fan; Qi Hao; Xiaoqiu Yuan; Di Wu; Yuxuan Pang; Chuangye Yan; Wenqi Li; Jiawei Wang; Nieng Yan

Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-RCAR family were recently identified as ABA receptors. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity; the molecular mechanisms by which PYLs mediate ABA signaling remain unknown, however. Here we report three crystal structures: apo-PYL2, (+)-ABA-bound PYL2 and (+)-ABA-bound PYL1 in complex with phosphatase ABI1. Apo-PYL2 contains a pocket surrounded by four highly conserved surface loops. In response to ABA binding, loop CL2 closes onto the pocket, creating a surface that recognizes ABI1. In the ternary complex, the CL2 loop is located near the active site of ABI1, blocking the entry of substrate proteins. Together, our data reveal the mechanisms by which ABA regulates PYL-mediated inhibition of PP2Cs.


Nature | 2012

Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

Linfeng Sun; Xin Zeng; Chuangye Yan; Xiuyun Sun; Xinqi Gong; Yu Rao; Nieng Yan

Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1–4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1–4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-d-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of d-xylose or d-glucose are invariant in GLUT1–4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1–4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.


Nature | 2014

Crystal structure of the human glucose transporter GLUT1

Dong Deng; Chao Xu; Pengcheng Sun; Jianping Wu; Chuangye Yan; Mingxu Hu; Nieng Yan

The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.


Nature | 2010

Structure of a fucose transporter in an outward-open conformation

Shangyu Dang; Linfeng Sun; Yongjian Huang; Feiran Lu; Yufeng Liu; Haipeng Gong; Jiawei Wang; Nieng Yan

The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured. Here we report the crystal structure of FucP at 3.1 Å resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.


Nature | 2005

Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans

Nieng Yan; Jijie Chai; Eui Seung Lee; Lichuan Gu; Qun Liu; Jiaqing He; Jia-Wei Wu; David Kokel; Huilin Li; Quan Hao; Ding Xue; Yigong Shi

Interplay among four genes—egl-1, ced-9, ced-4 and ced-3—controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4–CED-9 complex at 2.6 Å resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans.


Nature Structural & Molecular Biology | 2006

Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.

Zhuoru Wu; Nieng Yan; Liang Feng; Adam Oberstein; Hanchi Yan; Rosanna P. Baker; Lichuan Gu; Philip D. Jeffrey; Sinisa Urban; Yigong Shi

Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix α4 approximately 10 Å below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix α5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix α5.


Science | 2007

Structure of a Site-2 Protease Family Intramembrane Metalloprotease

Liang Feng; Hanchi Yan; Zhuoru Wu; Nieng Yan; Zhe Wang; Philip D. Jeffrey; Yigong Shi

Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue ∼14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices α1 and α6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.


Nature | 2013

Structural basis for the modular recognition of single-stranded RNA by PPR proteins

Ping Yin; Quanxiu Li; Chuangye Yan; Ying Liu; Junjie Liu; Feng Yu; Zheng Wang; Jiafu Long; Jianhua He; Hong-Wei Wang; Jiawei Wang; Jian-Kang Zhu; Yigong Shi; Nieng Yan

Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI–ATPH and PSAJ–RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5′ or 3′ exonucleases, PPR10 defines the corresponding 5′ and 3′ messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45 Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

Collaboration


Dive into the Nieng Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Yin

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge