Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haipeng Zhang is active.

Publication


Featured researches published by Haipeng Zhang.


Molecular Pharmacology | 2012

MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway.

Minfeng Shu; Yuehan Zhou; Wenbo Zhu; Haipeng Zhang; Sihan Wu; Jingkao Chen; Guangmei Yan

Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiation-inducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape and dramatic induction of astrocyte biomarker glial fibrillary acidic protein (GFAP). However, little progress has been made on molecular mechanisms related. Here we demonstrate that microRNA 335 (miR-335) is responsible for the glioma cell differentiation stimulated by activation of cAMP/PKA pathway. In the cAMP elevator cholera toxin-induced differentiation model of rat C6 glioma cells, miR-335 was significantly up-regulated, which was mimicked by other typical cAMP/PKA pathway activators (e.g., forskolin, dibutyryl-cAMP) and abolished by PKA-specific inhibitor (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT5720). In an assay measuring gain and loss of miR-335 function, exogenetic miR-335 resulted in induction of GFAP, whereas miR-335 specific inhibitor antagomir-335 violently blocked cholera toxin-induced GFAP up-regulation. It is noteworthy that in human U87-MG glioma cells and human primary culture glioma cells, miR-335 also mediated cholera toxin-induced differentiation. Taken together, our findings suggest that miR-335 is potently required for differentiation of malignant glioma cells induced by cAMP/PKA pathway activation, and a single microRNA may act as an important fate determinant to control the differentiation status of malignant gliomas, which has provided a new insight into differentiation-inducing therapy against malignant gliomas.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers

Yuan Lin; Haipeng Zhang; Jiankai Liang; Kai Li; Wenbo Zhu; Liwu Fu; Fang Wang; Xiaoke Zheng; Huijuan Shi; Sihan Wu; Xiao Xiao; Lijun Chen; Lipeng Tang; Min Yan; Xiaoxiao Yang; Yaqian Tan; Pengxin Qiu; Yijun Huang; Wei Yin; Xinwen Su; Haiyan Hu; Jun Hu; Guangmei Yan

Significance Although oncolytic virotherapy is showing great promise in clinical trials, not all patients are benefiting. Identifying predictors of therapeutic effectiveness for each oncolytic virus would provide a good chance to increase response rate. Here, we describe an alphavirus (M1) that possesses selective and potent antitumor activity through intravenous infusion, whereas its replication is controlled by the zinc-finger antiviral protein (ZAP) gene. A survey of cancer tissue banks reveals that ZAP is commonly deficient in human cancers, suggesting extensive application prospects of M1. Our work provides an example of a potentially personalized cancer therapy using a targeted oncolytic virus that can be selectively administered to patients with ZAP-deficient tumors. We predict that such agents will form the armamentarium of cancer therapy in the future. Oncolytic virotherapy is a growing treatment modality that uses replicating viruses as selective antineoplastic agents. Safety and efficacy considerations dictate that an ideal oncolytic agent would discriminate between normal and cancer cells on the basis of common genetic abnormalities in human cancers. Here, we identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells. In vitro, in vivo, and ex vivo studies showed potent oncolytic efficacy and high tumor tropism of M1. We showed that the selectivity depends on ZAP deficiency by systematic identification. A large-scale multicenter pathology study using tissue microarrays reveals that ZAP is commonly deficient in human cancers, suggesting extensive application prospects for M1. Additionally, M1 killed cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis. Our report provides novel insights into potentially personalized cancer therapy using oncolytic viruses.


Molecular Therapy | 2016

Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

Kai Li; Haipeng Zhang; Jianguang Qiu; Yuan Lin; Jiankai Liang; Xiao Xiao; Liwu Fu; Fang Wang; Jing Cai; Yaqian Tan; Wenbo Zhu; Wei Yin; Bingzheng Lu; Fan Xing; Lipeng Tang; Min Yan; Jialuo Mai; Yuan Li; Wenli Chen; Pengxin Qiu; Xingwen Su; Guangping Gao; Phillip W.L. Tai; Jun Hu; Guangmei Yan

Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.


Human Gene Therapy | 2016

Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections

Haipeng Zhang; Yuan Lin; Kai Li; Jiankai Liang; Xiao Xiao; Jing Cai; Yaqian Tan; Fan Xing; Jialuo Mai; Yuan Li; Wenli Chen; Longxiang Sheng; Jiayu Gu; Wenbo Zhu; Wei Yin; Pengxin Qiu; Xingwen Su; Bingzheng Lu; Xuyan Tian; Jinhui Liu; Wanjun Lu; Yunling Dou; Yijun Huang; Zhuang Kang; Guangping Gao; Zixu Mao; Shi Yuan Cheng; Ling Lu; Xuetao Bai; Guangmei Yan

Cancers figure among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Development of novel therapeutic agents is urgently needed for clinical cancer therapy. Alphavirus M1 is a Getah-like virus isolated from China with a genome of positive single-strand RNA. We have previously identified that alphavirus M1 is a naturally existing oncolytic virus with significant anticancer activity against different kinds of cancer (e.g., liver cancer, bladder cancer, and colon cancer). To support the incoming clinical trial of intravenous administration of alphavirus M1 to cancer patients, we assessed the safety of M1 in adult nonhuman primates. We previously presented the genome sequencing data of the cynomolgus macaques (Macaca fascicularis), which was demonstrated as an ideal animal species for virus infection study. Therefore, we chose cynomolgus macaques of either sex for the present safety study of oncolytic virus M1. In the first round of administration, five experimental macaques were intravenously injected with six times of oncolytic virus M1 (1 × 10(9) pfu/dose) in 1 week, compared with five vehicle-injected control animals. The last two rounds of injections were further completed in the following months in the same way as the first round. Body weight, temperature, complete blood count, clinical biochemistries, cytokine profiles, lymphocytes subsets, neutralizing antibody, and clinical symptoms were closely monitored at different time points. Magnetic resonance imaging was also performed to assess the possibility of encephalitis or arthritis. As a result, no clinical, biochemical, immunological, or medical imaging or other pathological evidence of toxicity was found during the whole process of the study. Our results in cynomolgus macaques suggested the safety of intravenous administration of oncolytic virus M1 in cancer patients in the future.


Cell Reports | 2017

The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes

Fan Xing; Yizhao Luan; Jing Cai; Sihan Wu; Jialuo Mai; Jiayu Gu; Haipeng Zhang; Kai Li; Yuan Lin; Xiao Xiao; Jiankai Liang; Yuan Li; Wenli Chen; Yaqian Tan; Longxiang Sheng; Bingzheng Lu; Wanjun Lu; Mingshi Gao; Pengxin Qiu; Xingwen Su; Wei Yin; Jun Hu; Zhongping Chen; Ke Sai; Jing Wang; Furong Chen; Yinsheng Chen; Shida Zhu; Dongbing Liu; Shi Yuan Cheng

SUMMARY Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells.


Science Translational Medicine | 2017

Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma

Haipeng Zhang; Kai Li; Yuan Lin; Fan Xing; Xiao Xiao; Jing Cai; Wenbo Zhu; Jiankai Liang; Yaqian Tan; Liwu Fu; Fang Wang; Wei Yin; Bingzheng Lu; Pengxin Qiu; Xingwen Su; Xuetao Bai; Jun Hu; Guangmei Yan

Inhibition of VCP sensitizes hepatocellular carcinoma cells to oncolytic virus M1–induced apoptosis. A virus and its reinforcement Oncolytic viruses can be effective against a variety of cancers, including hepatocellular carcinoma, where a viral treatment is showing evidence of efficacy in people. Zhang et al. performed a high-throughput drug screen to search for compounds to pair with an oncolytic virus called M1 to further increase its effectiveness against hepatocellular carcinoma. Through this screen, they identified inhibitors of valosin-containing protein, then used them together with M1, and demonstrated the efficacy of this regimen in mouse models of cancer. In addition, the combination was well tolerated in primates, suggesting that the drug and virus combination may translate to human patients. Oncolytic virotherapy is rapidly progressing through clinical evaluation. However, the therapeutic efficacy of oncolytic viruses in humans has been less than expected from preclinical studies. We describe an anticancer drug screen for compounds that enhance M1 oncolytic virus activity in hepatocellular carcinoma (HCC). An inhibitor of the valosin-containing protein (VCP) was identified as the top sensitizer, selectively increasing potency of the oncolytic virus up to 3600-fold. Further investigation revealed that VCP inhibitors cooperated with M1 virus–suppressed inositol-requiring enzyme 1α (IRE1α)–X-box binding protein 1 (XBP1) pathway and triggered irresolvable endoplasmic reticulum (ER) stress, subsequently promoting robust apoptosis in HCC. We show that VCP inhibitor improved the oncolytic efficacy of M1 virus in several mouse models of HCC and primary HCC tissues. Finally, this combinatorial therapeutic strategy was well tolerated in nonhuman primates. Our study identifies combined VCP inhibition and oncolytic virus as a potential treatment for HCC and demonstrates promising therapeutic potential.


Oncology Letters | 2014

Pregnenolone, a cholesterol metabolite, induces glioma cell apoptosis via activating extrinsic and intrinsic apoptotic pathways

Xiao Xiao; Lijun Chen; Ying Ouyang; Wenbo Zhu; Pengxin Qiu; Xinwen Su; Yunling Dou; Lipeng Tang; Min Yan; Haipeng Zhang; Xiaoxiao Yang; Dong Xu; Guangmei Yan

Gliomas are one of the most common types of malignant tumors worldwide, however, an effective therapeutic strategy not yet been fully determined. The present study aimed to investigate the anti-glioma activity and underlying mechanisms of pregnenolone, which originates from cholesterol and is metabolized into important steroid hormones in the body. The results demonstrated that 100 μM pregnenolone induced a significant loss of cell viability in various malignant glioma cell lines. In the U-87 MG, LN-18 and C6 cell lines, the loss of cell viability resulted from cell apoptosis, which was evidenced by apoptotic nuclear morphology changes and caspase 3 activation. Moreover, the increased activities of caspase 8 and 9 strongly indicated that pregnenolone activated the extrinsic and intrinsic pathways of apoptosis. Additionally, glioma cell apoptosis was prevented by the general caspase inhibitor, Z-VAD-FMK. In the C6 cells, upregulation of Fas and Fas ligand triggered the activation of the extrinsic pathway, whereas knockdown of Fas significantly abrogated the cell apoptosis that was induced by pregnenolone. Furthermore, downregulation of the anti-apoptotic protein, B-cell lymphoma 2 and upregulation of pro-apoptotic proteins, such as Bax and Bak, activated the intrinsic pathway. In conclusion, pregnenolone induced glioma cell apoptosis in a caspase-dependent manner, which was mediated by activation of the extrinsic and intrinsic apoptotic pathways.


Journal of Neurosurgical Anesthesiology | 2013

Diazepam inhibits proliferation of human glioblastoma cells through triggering a G0/G1 cell cycle arrest.

Jingkao Chen; Ying Ouyang; Lin Cao; Wenbo Zhu; Yuxi Zhou; Yuehan Zhou; Haipeng Zhang; Xiaoxiao Yang; Lifang Mao; Suizhen Lin; Jun Lin; Jun Hu; Guangmei Yan

Background: Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive malignancy in humans. Its rapid proliferation is a major obstacle to successful treatment. Patients with GBM often suffer from psychological disturbances associated with poor prognosis and physical discomfort. Diazepam is one of the most frequently used benzodiazepines (BZs) in cancer patients for its desirable psychotropic effects. The central effects of BZs are mediated by the activation of central BZ receptors. This study investigates whether diazepam has inhibitory effect on proliferation of GBM cell line T98G and explores its possible mechanism. Methods: Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and 5-bromo-2’-deoxyuridine (BrdU) incorporation assay. Cell cycle distribution was examined by flow cytometry. Western blot with specific protein antibodies was used to detect regulatory proteins involved in cell cycle regulation. Results: Diazepam significantly decreased the proliferation of T98G cells in a dose-dependent and time-dependent manner. This effect was not reversed by the central BZ receptor antagonist flumazenil or the peripheral BZ receptor antagonist PK11195, indicating that it was not mediated by BZ receptors. Flow cytometry indicated that diazepam caused a cell accumulation in G0/G1 phase, thereby contributing to cell proliferation inhibition. Furthermore, our findings showed that lessened phosphorylation of Rb accounted for diazepam-induced G0/G1 phase arrest. Conclusions: Diazepam inhibits the proliferation of human GBM T98G cells by inducing G0/G1 phase arrest. Diazepam has potential to be a lead for new drugs in GBM therapy because of its antitumor activity.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics

Jing Cai; Yuan Lin; Haipeng Zhang; Jiankai Liang; Yaqian Tan; Webster K. Cavenee; Guangmei Yan

Significance Although oncolytic therapy is showing great potential in clinical trials, not all patients benefit from it. Combining oncolytic viruses with anticancer chemicals could provide a better chance to increase the response rate. Here, we report that the combination of an alphavirus (M1) that we identified previously and second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs) shows substantial oncolytic effect in vitro, in vivo, and ex vivo (samples from patients’ tumor tissues). The combined effect is mediated by a bystander killing effect and increased replication of M1. Our work provides an example for potentiating the response rate in refractory samples by synergizing oncolytic virus with other anticancer chemicals. We predict that this treatment strategy will be a promising tool to combat cancer in the future. Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase–mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.


Analytical Sciences | 2016

Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography–Tandem Mass Spectrometry

Youqiong Wang; Lipeng Tang; Wei Yin; Jiesi Chen; Tiandong Leng; Xiaoke Zheng; Wenbo Zhu; Haipeng Zhang; Pengxin Qiu; Xiaoxiao Yang; Guangmei Yan; Haiyan Hu

Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.

Collaboration


Dive into the Haipeng Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenbo Zhu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Pengxin Qiu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yuan Lin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Xiao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yaqian Tan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jing Cai

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jun Hu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wei Yin

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge