Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pengxin Qiu is active.

Publication


Featured researches published by Pengxin Qiu.


BMC Genomics | 2006

Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags

Bing Zhang; Qinghua Liu; Wei Yin; Xiaowei Zhang; Yijun Huang; Yingfeng Luo; Pengxin Qiu; Xingwen Su; Jun Yu; Songnian Hu; Guangmei Yan

BackgroundThe snake venom gland is a specialized organ, which synthesizes and secretes the complex and abundant toxin proteins. Though gene expression in the snake venom gland has been extensively studied, the focus has been on the components of the venom. As far as the molecular mechanism of toxin secretion and metabolism is concerned, we still knew a little. Therefore, a fundamental question being arisen is what genes are expressed in the snake venom glands besides many toxin components?ResultsTo examine extensively the transcripts expressed in the venom gland of Deinagkistrodon acutus and unveil the potential of its products on cellular structure and functional aspects, we generated 8696 expressed sequence tags (ESTs) from a non-normalized cDNA library. All ESTs were clustered into 3416 clusters, of which 40.16% of total ESTs belong to recognized toxin-coding sequences; 39.85% are similar to cellular transcripts; and 20.00% have no significant similarity to any known sequences. By analyzing cellular functional transcripts, we found high expression of some venom related genes and gland-specific genes, such as calglandulin EF-hand protein gene and protein disulfide isomerase gene. The transcripts of creatine kinase and NADH dehydrogenase were also identified at high level. Moreover, abundant cellular structural proteins similar to mammalian muscle tissues were also identified. The phylogenetic analysis of two snake venom toxin families of group III metalloproteinase and serine protease in suborder Colubroidea showed an early single recruitment event in the viperids evolutionary process.ConclusionGene cataloguing and profiling of the venom gland of Deinagkistrodon acutus is an essential requisite to provide molecular reagents for functional genomic studies needed for elucidating mechanisms of action of toxins and surveying physiological events taking place in the very specialized secretory tissue. So this study provides a first global view of the genetic programs for the venom gland of Deinagkistrodon acutus described so far and an insight into molecular mechanism of toxin secreting.All sequences data reported in this paper have been submitted into the public database [GenBank: DV556511-DV565206].


Molecular Pharmacology | 2009

A Small-Molecule Triptolide Suppresses Angiogenesis and Invasion of Human Anaplastic Thyroid Carcinoma Cells via Down-Regulation of the Nuclear Factor-κB Pathway

Wenbo Zhu; Yanqiu Ou; Yan Li; Ru Xiao; Minfeng Shu; Yuehan Zhou; Jun Xie; Songmin He; Pengxin Qiu; Guangmei Yan

Anaplastic thyroid carcinoma (ATC) is among the most aggressive malignancies known and is characterized with rapid growth, early invasion, and complete refractoriness to current therapies. Here we report that triptolide, a small molecule from a Chinese herb, could potently inhibit proliferation in vitro, angiogenesis in vivo, and invasion in a Matrigel model in human ATC cell line TA-K cells at nanomolar concentrations. We further elucidate that triptolide inhibits the nuclear factor-κB (NF-κB) transcriptional activity via blocking the association of p65 subunit with CREB-binding protein (CBP)/p300 in the early stage and via decreasing the protein level of p65 in the late stage. Expression of the NF-κB targeting genes cyclin D1, vascular endothelial growth factor, and urokinase-type plasminogen activator is significantly reduced by triptolide in both TA-K and 8505C human ATC cell lines, which are well known to be critical for proliferation, angiogenesis, and invasion in solid tumors. Our findings suggest that triptolide may function as a small molecule inhibitor of tumor angiogenesis and invasion and may provide novel mechanistic insights into the potential therapy for human ATC.


Anesthesiology | 2006

Isoflurane Produces Delayed Preconditioning against Spinal Cord Ischemic Injury via Release of Free Radicals in Rabbits

Hanfei Sang; Lin Cao; Pengxin Qiu; Lize Xiong; Rongrong Wang; Guangmei Yan

Background:Whether isoflurane preconditioning produces delayed neuroprotection in the spinal cord is unclear. The authors tested the hypothesis that isoflurane produces delayed preconditioning against spinal cord ischemic injury and, further, that the beneficial effect is dependent on free radicals. Methods:In experiment 1, 63 rabbits were randomly assigned to seven groups (n = 9 each): Animals in the control group only underwent spinal cord ischemia without pretreatment; animals in the Iso24h, Iso48h, and Iso72h groups received 40 min of 1.0 minimum alveolar concentration isoflurane in 100% oxygen each day for 5 consecutive days, with the last pretreatment at 24, 48, and 72 h, respectively, before spinal cord ischemia; animals in the O224h, O248h, and O272h groups received 40 min of 100% oxygen each day for 5 consecutive days, with the last pretreatment at 24, 48, and 72 h, respectively, before spinal cord ischemia. In experiment 2, 48 rabbits were randomly assigned into four groups (n = 12 each): Animals in the O2 and Iso groups received 3 ml/kg saline intraperitoneally 1 h before each session of oxygen pretreatment and isoflurane pretreatment, respectively. In the DMTU+Iso and DMTU+O2 groups, 10% dimethylthiourea (DMTU, a potent free radical scavenger) dissolved in saline (3 ml/kg) was administered at the same time point. Twenty-four hours after the last pretreatment, animals were subjected to spinal cord ischemia. Spinal cord ischemia was induced by an infrarenal aorta clamping for 20 min. Forty-eight hours after reperfusion, neurologic function and histopathology of the spinal cord were examined. Results:In experiment 1, the neurologic and histopathologic outcomes in the Iso24h and Iso48h groups were better than those in the control group (P < 0.005 for each comparison); the neurologic and histopathologic outcomes in the control group showed no significant differences in comparison with the O224h, O248h, O272h, and Iso72h groups (P > 0.05 for each comparison). In experiment 2, the neurologic and histopathologic outcomes in the Iso group were better than those in the DMTU+Iso, O2, and DMTU+O2 groups (P < 0.01 for each comparison); there were no significant differences in the neurologic and histopathologic outcomes among the DMTU+Iso, O2, and DMTU+O2 groups (P > 0.05 for each comparison). Conclusions:Isoflurane produces delayed preconditioning against spinal cord ischemic injury, and the beneficial effect may be dependent on the release of free radicals.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers

Yuan Lin; Haipeng Zhang; Jiankai Liang; Kai Li; Wenbo Zhu; Liwu Fu; Fang Wang; Xiaoke Zheng; Huijuan Shi; Sihan Wu; Xiao Xiao; Lijun Chen; Lipeng Tang; Min Yan; Xiaoxiao Yang; Yaqian Tan; Pengxin Qiu; Yijun Huang; Wei Yin; Xinwen Su; Haiyan Hu; Jun Hu; Guangmei Yan

Significance Although oncolytic virotherapy is showing great promise in clinical trials, not all patients are benefiting. Identifying predictors of therapeutic effectiveness for each oncolytic virus would provide a good chance to increase response rate. Here, we describe an alphavirus (M1) that possesses selective and potent antitumor activity through intravenous infusion, whereas its replication is controlled by the zinc-finger antiviral protein (ZAP) gene. A survey of cancer tissue banks reveals that ZAP is commonly deficient in human cancers, suggesting extensive application prospects of M1. Our work provides an example of a potentially personalized cancer therapy using a targeted oncolytic virus that can be selectively administered to patients with ZAP-deficient tumors. We predict that such agents will form the armamentarium of cancer therapy in the future. Oncolytic virotherapy is a growing treatment modality that uses replicating viruses as selective antineoplastic agents. Safety and efficacy considerations dictate that an ideal oncolytic agent would discriminate between normal and cancer cells on the basis of common genetic abnormalities in human cancers. Here, we identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells. In vitro, in vivo, and ex vivo studies showed potent oncolytic efficacy and high tumor tropism of M1. We showed that the selectivity depends on ZAP deficiency by systematic identification. A large-scale multicenter pathology study using tissue microarrays reveals that ZAP is commonly deficient in human cancers, suggesting extensive application prospects for M1. Additionally, M1 killed cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis. Our report provides novel insights into potentially personalized cancer therapy using oncolytic viruses.


Oncology Reports | 2011

Triptolide-induced cell cycle arrest and apoptosis in human renal cell carcinoma cells

Jingjie Li; Wenbo Zhu; Tiandong Leng; Minfeng Shu; Yijun Huang; Dong Xu; Pengxin Qiu; Xingwen Su; Guangmei Yan

Renal cell carcinoma (RCC) is the most frequent type of renal-originated malignancy. Although nephrectomy is successfully used to save the lives of patients with localized RCC, treatment of advanced and other refractory RCCs is poor and still inadequate. Here, we show that triptolide, a small molecule and a well-known anti-inflammatory and anti-immunity agent used in the clinic, is capable of inducing cell apoptosis via the mitochondrial pathway in the 786-0 RCC cell line. This induction occurred in concert with reduced expression of genes related to the stabilization of mitochondria such as Bcl-2 and Bcl-XL. Cell cycle analysis showed that exposure to triptolide decreased the proportion of cells in the G0/G1 and G2/M phases, and increased the proportion of cells in the S phase. Cell accumulation in the S phase can be attributed to reduced expression of cell cycle checkpoint regulators such as cyclin A, cyclin B, CDK1, CDK2 and retinoblastoma proteins (Rb). These results raise the possibility that triptolide-induced apoptosis is mediated by cell cycle arrest. Similarly, in another human RCC cell line, OS-RC-2, triptolide-induced apoptosis and cell accumulation in S phase were also observed. Therefore, triptolide emerges as a stimulator of apoptosis by influencing coordinate regulation of proliferation and apoptosis, and may be applicable to the treatment of human renal cell carcinoma.


Pancreas | 2012

Triptolide cooperates with Cisplatin to induce apoptosis in gemcitabine-resistant pancreatic cancer.

Wenbo Zhu; Jingjie Li; Sihan Wu; Shifeng Li; Liang Le; Xingwen Su; Pengxin Qiu; Haiyan Hu; Guangmei Yan

Objectives We aim to pharmacologically downregulate heat shock protein 27 (HSP27) through triptolide (TPL) to improve the drug sensitivity of pancreatic cancer to cisplatin (DDP). Methods In vitro, we assessed cell viability and apoptosis by the combination of TPL and DDP in gemcitabine-resistant human pancreatic carcinoma PANC-1 and MIA PaCa-2 cell lines and examined the effect of silencing HSP27 by a small interfering RNA on cytotoxicity induced by TPL or DDP. In vivo, we apply TPL with DDP in a xenograft model to test the synergic action. Results Triptolide cooperates with DDP to decrease cell viability and to induce apoptosis via the mitochondrial pathway, which is accompanied by a sharp decline in HSP27. Knocking down endogenous HSP27 can sensitize cancer cells to cytotoxicity with TPL or DDP, indicating the critical role of HSP27 down-regulation in the synergic effect. Meanwhile, TPL acts in synergy with DDP to cause tumor regression in vivo. Conclusions The combined therapy of TPL and DDP triggers a synergic apoptosis via inhibiting HSP27 in human gemcitabine-resistant pancreatic carcinoma and has a strong potential to be developed into a new effective regimen for pancreatic cancer treatment. Abbreviations TPL - triptolide DDP - cisplatin HSP27 - heat shock protein 27 kd HSP70 - heat shock protein 70 kd HSP90 - heat shock protein 90 kd siRNA - small interfering RNA HSPs - heat shock proteins MTT - 3-(4 5-dimethylthiaziazol-2-yl)-2 5-diphenyl tetrazolium bromide OD - optical density LDH - lactate dehydrogenase TNF - tumor necrosis factor HSF-1 - heat shock factor 1


Vascular Pharmacology | 2010

Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated by targeting vascular endothelial and tumor cells

Wenbo Zhu; Songmin He; Yan Li; Pengxin Qiu; Minfeng Shu; Yanqiu Ou; Yuehan Zhou; Tiandong Leng; Jun Xie; Xiaoke Zheng; Dong Xu; Xingwen Su; Guangmei Yan

Triptolide is confirmed to suppress angiogenesis of anaplastic thyroid carcinoma. Here we further expound the precise mechanism involved in this activity. Triptolide downregulated nuclear factor kappa B (NF-kappaB) pathway and its targeting genes associated with endothelial cell mobilization in human umbilical vein endothelial cells (HUVECs) and impaired VEGF expression in thyroid carcinoma TA-K cells. Furthermore, both triptolide and the conditioned medium from triptolide-treated TA-K cells (CMT) significantly attenuated proliferation, migration and tube formation of HUVECs. In vivo, triptolide inhibited TA-K cell-induced tumor growth, vascular formation and VEGF expression. Our data establish that triptolide inhibits tumor angiogenesis by the dual action on vascular endothelial cells and tumor cells, thus providing a novel and overall explanation for the anti-angiogenesis action of triptolide. The multicellular targets emphasize triptolide as a high-performance and potential angiogenesis inhibitor.


Urologic Oncology-seminars and Original Investigations | 2014

Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics.

Yanqiu Ou; Xiaoke Zheng; Yixing Gao; Minfeng Shu; Tiandong Leng; Yan Li; Wei Yin; Wenbo Zhu; Yijun Huang; Yuxi Zhou; Jianjun Tang; Pengxin Qiu; Guangmei Yan; Jun Hu; Huaizhen Ruan; Haiyan Hu

OBJECTIVE With the notorious reputation of the vicious invasion, the bladder cancer is the most common malignant tumor of the urinary system. Inhibiting invasion through microtubule dynamics interruption has emerged as an important treatment of bladder cancer. Here we investigated the role of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in human bladder cancer cells invasion. MATERIALS AND METHODS With or without the treatment of various cAMP elevators, we assessed invasive and migrated capabilities of T24 and UM-UC-3, two high-grade invasive bladder cancer cell lines, using matrigel transwell inserts assay and scratch wound healing assay. The microtubule (MT) dynamics were examined by immunofluorescence and immunoblotting. Microtubule-Associated Protein 4 (MAP4) was silenced to investigate its role in tumor invasion. We also analyzed gene expression of MAP4 in 34 patients with bladder cancer using immunohistochemical staining assay. The interaction between PKA and MAP4 was examined by co-immunoprecipitation. RESULTS We used cAMP elevators and small interfering RNA of MAP4 here, found that both of them can potently inhibit the invasion and the migration of bladder cancer cells by disrupting microtubule (MT) cytoskeleton. Consistently, the bladder cancer grade is positively correlated with the protein level of MAP4. Furthermore, we found that cAMP/PKA signaling can disrupt MT cytoskeleton by the phosphorylation of MAP4. CONCLUSION Our results indicated that the cAMP/PKA signaling pathway might inhibit bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics, which could be exploited for the therapy of invasive bladder cancer.


The Journal of Neuroscience | 2014

The Major Cholesterol Metabolite Cholestane-3β,5α,6β-Triol Functions as an Endogenous Neuroprotectant

Haiyan Hu; Yuehan Zhou; Tiandong Leng; Ailing Liu; Youqiong Wang; Xiuhua You; Jingkao Chen; Lipeng Tang; Wenli Chen; Pengxin Qiu; Wei Yin; Yijun Huang; Jingxia Zhang; Liwei Wang; Hanfei Sang; Guangmei Yan

Overstimulation of NMDA-type glutamate receptors is believed to be responsible for neuronal death of the CNS in various disorders, including cerebral and spinal cord ischemia. However, the intrinsic and physiological mechanisms of modulation of these receptors are essentially unknown. Here we report that cholestane-3β,5α,6β-triol (triol), a major metabolite of cholesterol, is an endogenous neuroprotectant and protects against neuronal injury both in vitro and in vivo via negative modulation of NMDA receptors. Treatment of cultured neurons with triol protects against glutamate-induced neurotoxicity, and administration of triol significantly decreases neuronal injury after spinal cord ischemia in rabbits and transient focal cerebral ischemia in rats. An inducible elevation of triol is associated with ischemic preconditioning and subsequent neuroprotection in the spinal cord of rabbits. This neuroprotection is effectively abolished by preadministration of a specific inhibitor of triol synthesis. Physiological concentrations of triol attenuate [Ca2+]i induced by glutamate and decrease inward NMDA-mediated currents in cultured cortical neurons and HEK-293 cells transiently transfected with NR1/NR2B NMDA receptors. Saturable binding of [3H]triol to cerebellar granule neurons and displacement of [3H]MK-801 binding to NMDA receptors by triol suggest that direct blockade of NMDA receptors may underlie the neuroprotective properties. Our findings suggest that the naturally occurring oxysterol, the major cholesterol metabolite triol, functions as an endogenous neuroprotectant in vivo, which may provide novel insights into understanding and developing potential therapeutics for disorders in the CNS.


Experimental and Toxicologic Pathology | 2009

JNK and p38 were involved in hypoxia and reoxygenation-induced apoptosis of cultured rat cerebellar granule neurons.

Ailing Liu; Xin-Wei Wang; Ai-Hua Liu; Xingwen Su; Weijian Jiang; Pengxin Qiu; Guangmei Yan

As a model of the reperfusion injury found in stroke, we treated cerebellar granule neurons (CGNs) with hypoxia followed by reoxygenation. Hypoxia for 3h followed by 24h reoxygenation (H/R) induced a typical apoptosis of CGNs. CGNs exposed to H/R responded by activating JNK, increasing the expression of p38 and ultimately caused CGNs dying. Furthermore, apoptosis of CGNs induced by H/R was inhibited by pre-treatment with SB203580 or SP600125, and the inhibitory effect of SB203580 was greater than that of SP600125. Additionally, we also found that H/R temporally activated Akt and inactivated glycogen synthesis kinase-3beta (GSK-3beta), two proteins the functions of which were important in cell survival and energy metabolism. These findings demonstrated that H/R-induced apoptosis in CGNs by enhancing JNK and p38 activity, which contributed at least in part to H/R-induced apoptosis of CGNs.

Collaboration


Dive into the Pengxin Qiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingwen Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yijun Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wenbo Zhu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wei Yin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Hu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge