Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haisen Ta is active.

Publication


Featured researches published by Haisen Ta.


Nature Methods | 2011

Sharper low-power STED nanoscopy by time gating.

Giuseppe Vicidomini; Gael Moneron; Kyu Y Han; Volker Westphal; Haisen Ta; Matthias Reuss; Johann Engelhardt; Christian Eggeling; Stefan W. Hell

Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED beams, as demonstrated by quantifying the dynamics of labeled lipid molecules in the plasma membrane of living cells.


Nature Methods | 2014

Fluorogenic probes for live-cell imaging of the cytoskeleton

Gražvydas Lukinavičius; Luc Reymond; Elisa D'Este; Anastasiya Masharina; Fabian Göttfert; Haisen Ta; Angelika Güther; Mathias Fournier; Stefano Rizzo; Herbert Waldmann; Claudia Blaukopf; Christoph Sommer; Daniel W. Gerlich; Hans-Dieter Arndt; Stefan W. Hell; Kai Johnsson

We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells.


Nature Communications | 2014

Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells.

Alf Honigmann; Veronika Mueller; Haisen Ta; Andreas Schoenle; Erdinc Sezgin; Stefan W. Hell; Christian Eggeling

The interaction of lipids and proteins plays an important role in plasma membrane bioactivity, and much can be learned from their diffusion characteristics. Here we present the combination of super-resolution STED microscopy with scanning fluorescence correlation spectroscopy (scanning STED-FCS, sSTED-FCS) to characterize the spatial and temporal heterogeneity of lipid interactions. sSTED-FCS reveals transient molecular interaction hotspots for a fluorescent sphingolipid analogue. The interaction sites are smaller than 80 nm in diameter and lipids are transiently trapped for several milliseconds in these areas. In comparison, newly developed fluorescent phospholipid and cholesterol analogues with improved phase-partitioning properties show more homogenous diffusion, independent of the preference for liquid-ordered or disordered membrane environments. Our results do not support the presence of nanodomains based on lipid-phase separation in the basal membrane of our cultured nonstimulated cells, and show that alternative interactions are responsible for the strong local trapping of our sphingolipid analogue.


PLOS ONE | 2013

STED nanoscopy with time-gated detection: theoretical and experimental aspects.

Giuseppe Vicidomini; Andreas Schönle; Haisen Ta; Kyu Young Han; Gael Moneron; Christian Eggeling; Stefan W. Hell

In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution.


Optical Nanoscopy | 2012

Novel red fluorophores with superior performance in STED microscopy

Christian A. Wurm; Kirill Kolmakov; Fabian Göttfert; Haisen Ta; Mariano L. Bossi; Heiko Schill; Sebastian Berning; Stefan Jakobs; Gerald Donnert; Vladimir N. Belov; Stefan W. Hell

In optical microscopy, most red-emitting dyes provide only moderate performance due to unspecific binding, poor labeling efficiency, and insufficient brightness. Here we report on four novel red fluororescent dyes, including the first phosphorylated dye, created by combining a rigidized rhodamine backbone with various polar groups. They exhibit large fluorescence quantum yields and improved NHS ester stability. While these fluorophores are highly suitable for fluorescence microscopy in general, they excel in stimulated emission depletion (STED) microscopy, providing < 25 nm spatial resolution in raw images of cells.


Journal of the American Chemical Society | 2016

Fluorogenic Probes for Multicolor Imaging in Living Cells

Gražvydas Lukinavičius; Luc Reymond; Keitaro Umezawa; Olivier Sallin; Elisa D’Este; Fabian Göttfert; Haisen Ta; Stefan W. Hell; Yasuteru Urano; Kai Johnsson

Here we present a far-red, silicon-rhodamine-based fluorophore (SiR700) for live-cell multicolor imaging. SiR700 has excitation and emission maxima at 690 and 715 nm, respectively. SiR700-based probes for F-actin, microtubules, lysosomes, and SNAP-tag are fluorogenic, cell-permeable, and compatible with superresolution microscopy. In conjunction with probes based on the previously introduced carboxy-SiR650, SiR700-based probes permit multicolor live-cell superresolution microscopy in the far-red, thus significantly expanding our capacity for imaging living cells.


Nano Letters | 2015

STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.

Giuseppe Vicidomini; Haisen Ta; Alf Honigmann; Veronika Mueller; Mathias P. Clausen; Dominic Waithe; Silvia Galiani; Erdinc Sezgin; Alberto Diaspro; Stefan W. Hell; Christian Eggeling

Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality.


Nature Communications | 2015

Mapping molecules in scanning far-field fluorescence nanoscopy.

Haisen Ta; Jan Keller; Markus Haltmeier; Sinem K. Saka; Jürgen J. Schmied; Felipe Opazo; Philip Tinnefeld; Axel Munk; Stefan W. Hell

In fluorescence microscopy, the distribution of the emitting molecule number in space is usually obtained by dividing the measured fluorescence by that of a single emitter. However, the brightness of individual emitters may vary strongly in the sample or be inaccessible. Moreover, with increasing (super-) resolution, fewer molecules are found per pixel, making this approach unreliable. Here we map the distribution of molecules by exploiting the fact that a single molecule emits only a single photon at a time. Thus, by analysing the simultaneous arrival of multiple photons during confocal imaging, we can establish the number and local brightness of typically up to 20 molecules per confocal (diffraction sized) recording volume. Subsequent recording by stimulated emission depletion microscopy provides the distribution of the number of molecules with subdiffraction resolution. The method is applied to mapping the three-dimensional nanoscale organization of internalized transferrin receptors on human HEK293 cells.


Chemistry: A European Journal | 2015

Far-red emitting fluorescent dyes for optical nanoscopy: Fluorinated silicon–rhodamines (SiRF dyes) and phosphorylated oxazines.

Kirill Kolmakov; Elke Hebisch; Thomas Wolfram; Lars A. Nordwig; Christian A. Wurm; Haisen Ta; Volker Westphal; Vladimir N. Belov; Stefan W. Hell

Far-red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground-state depletion (GSDIM) super-resolution microscopy are presented. Fluorinated silicon-rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high-yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon-rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750-775 nm provides excellent imaging performance and suppresses re-excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far-red emitting dyes (photobleaching, optical resolution, and switch-off behavior) are discussed in detail and compared with those of some well-established fluorophores with similar spectral properties.


ACS Chemical Biology | 2017

Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins

Alexey N. Butkevich; Haisen Ta; Michael Ratz; Stefan Stoldt; Stefan Jakobs; Vladimir N. Belov; Stefan W. Hell

A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.

Collaboration


Dive into the Haisen Ta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Vicidomini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge