Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haitao Li is active.

Publication


Featured researches published by Haitao Li.


Medicinal Research Reviews | 2009

Nitrite as Regulator of Hypoxic Signaling in Mammalian Physiology

Ernst E. van Faassen; Soheyl Bahrami; Martin Feelisch; Neil Hogg; Malte Kelm; Daniel B. Kim-Shapiro; Andrey V. Kozlov; Haitao Li; Jon O. Lundberg; Ron Mason; Hans Nohl; Tienush Rassaf; Alexandre Samouilov; Anny Slama-Schwok; Sruti Shiva; Anatoly F. Vanin; Eddie Weitzberg; Jay L. Zweier; Mark T. Gladwin

In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and nonenzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue.


Journal of Biological Chemistry | 2001

Characterization of the Magnitude and Kinetics of Xanthine Oxidase-catalyzed Nitrite Reduction EVALUATION OF ITS ROLE IN NITRIC OXIDE GENERATION IN ANOXIC TISSUES

Haitao Li; Alexandre Samouilov; Xiaoping Liu; Jay L. Zweier

Xanthine oxidase (XO)-catalyzed nitrite reduction with nitric oxide (NO) production has been reported to occur under anaerobic conditions, but questions remain regarding the magnitude, kinetics, and biological importance of this process. To characterize this mechanism and its quantitative importance in biological systems, electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, and NO electrode studies were performed. The XO reducing substrates xanthine, NADH, and 2,3-dihydroxybenz-aldehyde triggered nitrite reduction to NO, and the molybdenum-binding XO inhibitor oxypurinol inhibited this NO formation, indicating that nitrite reduction occurs at the molybdenum site. However, at higher xanthine concentrations, partial inhibition was seen, suggesting the formation of a substrate-bound reduced enzyme complex with xanthine blocking the molybdenum site. Studies of the pH dependence of NO formation indicated that XO-mediated nitrite reduction occurred via an acid-catalyzed mechanism. Nitrite and reducing substrate concentrations were important regulators of XO-catalyzed NO generation. The substrate dependence of anaerobic XO-catalyzed nitrite reduction followed Michaelis-Menten kinetics, enabling prediction of the magnitude of NO formation and delineation of the quantitative importance of this process in biological systems. It was determined that under conditions occurring during no-flow ischemia, myocardial XO and nitrite levels are sufficient to generate NO levels comparable to those produced from nitric oxide synthase. Thus, XO-catalyzed nitrite reduction can be an important source of NO generation under ischemic conditions.


Journal of Biological Chemistry | 2008

Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase.

Haitao Li; Hongmei Cui; Tapan Kumar Kundu; Wael Alzawahra; Jay L. Zweier

Recent studies have shown that nitrite is an important storage form and source of NO in biological systems. Controversy remains, however, regarding whether NO formation from nitrite occurs primarily in tissues or in blood. Questions also remain regarding the mechanism, magnitude, and contributions of several alternative pathways of nitrite-dependent NO generation in biological systems. To characterize the mechanism and magnitude of NO generation from nitrite, electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, and immunoassays of cGMP formation were performed. The addition of nitrite triggered a large amount of NO generation in tissues such as heart and liver, but only trace NO production in blood. Carbon monoxide increased NO release from blood, suggesting that hemoglobin acts to scavenge NO not to generate it. Administration of the xanthine oxidase (XO) inhibitor oxypurinol or aldehyde oxidase (AO) inhibitor raloxifene significantly decreased NO generation from nitrite in heart or liver. NO formation rates increased dramatically with decreasing pH or with decreased oxygen tension. Isolated enzyme studies further confirm that XO and AO, but not hemoglobin, are critical nitrite reductases. Overall, NO generation from nitrite mainly occurs in tissues not in the blood, with XO and AO playing critical roles in nitrite reduction, and this process is regulated by pH, oxygen tension, nitrite, and reducing substrate concentrations.


Journal of Biological Chemistry | 2009

Characterization of the Magnitude and Mechanism of Aldehyde Oxidase-mediated Nitric Oxide Production from Nitrite

Haitao Li; Tapan Kumar Kundu; Jay L. Zweier

Aldehyde oxidase (AO) is a cytosolic enzyme with an important role in drug and xenobiotic metabolism. Although AO has structural similarity to bacterial nitrite reductases, it is unknown whether AO-catalyzed nitrite reduction can be an important source of NO. The mechanism, magnitude, and quantitative importance of AO-mediated nitrite reduction in tissues have not been reported. To investigate this pathway and its quantitative importance, EPR spectroscopy, chemiluminescence NO analyzer, and immunoassays of cGMP formation were performed. The kinetics and magnitude of AO-dependent NO formation were characterized. In the presence of typical aldehyde substrates or NADH, AO reduced nitrite to NO. Kinetics of AO-catalyzed nitrite reduction followed Michaelis-Menten kinetics under anaerobic conditions. Under physiological conditions, nitrite levels are far below its measured Km value in the presence of either the flavin site electron donor NADH or molybdenum site aldehyde electron donors. Under aerobic conditions with the FAD site-binding substrate, NADH, AO-mediated NO production was largely maintained, although with aldehyde substrates oxygen-dependent inhibition was seen. Oxygen tension, substrate, and pH levels were important regulators of AO-catalyzed NO generation. From kinetic data, it was determined that during ischemia hepatic, pulmonary, or myocardial AO and nitrite levels were sufficient to result in NO generation comparable to or exceeding maximal production by constitutive NO synthases. Thus, AO-catalyzed nitrite reduction can be an important source of NO generation, and its NO production will be further increased by therapeutic administration of nitrite.


Nitric Oxide | 2010

Mechanisms of nitrite reduction to nitric oxide in the heart and vessel wall

Jay L. Zweier; Haitao Li; Alexandre Samouilov; Xiaoping Liu

Nitric oxide (NO) is an important regulator of a variety of biological functions, and also has a role in the pathogenesis of cellular injury. It had been generally accepted that NO is solely generated in biological tissues by specific nitric oxide synthases (NOS) which metabolize arginine to citrulline with the formation of NO. However, over the last 15 years, nitrite-mediated NO production has been shown to be an important mechanism of NO formation in the heart and cardiovascular system. Now numerous studies have demonstrated that nitrite can be an important source rather than simply a product of NO in mammalian cells and tissues and can be a potential vasodilator drug for cardiovascular diseases. There are a variety of mechanisms of nitrite reduction to NO and it is now appreciated that this process, while enhanced under hypoxic conditions, also occurs under normoxia. Several methods, including electron paramagnetic resonance, chemiluminescence NO analyzer, and NO electrode have been utilized to measure, quantitate, and image nitrite-mediated NO formation. Results reveal that nitrite-dependent NO generation plays critical physiological and pathological roles, and is controlled by oxygen tension, pH, reducing substrates and nitrite levels. In this manuscript, we review the mechanisms of nitrite-mediated NO formation and the effects of oxygen on this process with a focus on how this occurs in the heart and vessels.


Journal of Biological Chemistry | 2012

Characterization of the Mechanism and Magnitude of Cytoglobin-mediated Nitrite Reduction and Nitric Oxide Generation under Anaerobic Conditions

Haitao Li; Craig Hemann; Mohamed A. El-Mahdy; Jay L. Zweier

Background: Cytoglobin plays cytoprotective roles under hypoxic/ischemic conditions, but the mechanisms remain unclear. Results: Cytoglobin functions as a nitrite reductase leading to NO generation and soluble guanylyl cyclase activation under anaerobic or severely hypoxic conditions and this is increased by acidosis as occurs in ischemia. Conclusion: Cytoglobin-mediated nitrite reduction generates NO that activates soluble guanylyl cyclase under hypoxic/ischemic conditions. Significance: Cytoglobin serves a protective function by reducing nitrite to NO under ischemic conditions. Cytoglobin (Cygb) is a recently discovered cytoplasmic heme-binding globin. Although multiple hemeproteins have been reported to function as nitrite reductases in mammalian cells, it is unknown whether Cygb can also reduce nitrite to nitric oxide (NO). The mechanism, magnitude, and quantitative importance of Cygb-mediated nitrite reduction in tissues have not been reported. To investigate this pathway and its quantitative importance, EPR spectroscopy, spectrophotometric measurements, and chemiluminescence NO analyzer studies were performed. Under anaerobic conditions, mixing nitrite with ferrous-Cygb triggered NO formation that was trapped and detected using EPR spin trapping. Spectrophotometric studies revealed that nitrite binding to ferrous-Cygb is followed by formation of ferric-Cygb and NO. The kinetics and magnitude of Cygb-mediated NO formation were characterized. It was observed that Cygb-mediated NO generation increased linearly with the increase of nitrite concentration under anaerobic conditions. This Cygb-mediated NO production greatly increased with acidosis and near-anoxia as occur in ischemic conditions. With the addition of nitrite, soluble guanylyl cyclase activation was significantly higher in normal smooth muscle cells compared with Cygb knocked down cells with Cygb accounting for ∼40% of the activation in control cells and ∼60% in cells subjected to hypoxia for 48 h. Overall, these studies show that Cygb-mediated nitrite reduction can play an important role in NO generation and soluble guanylyl cyclase activation under hypoxic conditions, with this process regulated by pH, oxygen tension, nitrite concentration, and the redox state of the cells.


Journal of Biological Chemistry | 2006

Characterization of the mechanism of cytochrome P450 reductase-cytochrome P450-mediated nitric oxide and nitrosothiol generation from organic nitrates

Haitao Li; Xiaoping Liu; Hongmei Cui; Yeong-Renn Chen; Arturo J. Cardounel; Jay L. Zweier

Mammalian cytochrome P450 reductase (CPR) and cytochrome P450 (CP) play important roles in organic nitrate bioactivation; however, the mechanism by which they convert organic nitrate to NO remains unknown. Questions remain regarding the initial precursor of NO that serves to link organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of CPR-CP-mediated organic nitrate bioactivation, EPR, chemiluminescence NO analyzer, NO electrode, and immunoassay studies were performed. With rat hepatic microsomes or purified CPR, the presence of NADPH triggered organic nitrate reduction to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}. The CPR flavin site inhibitor diphenyleneiodonium inhibited this \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} generation, whereas the CP inhibitor clotrimazole did not. However, clotrimazole greatly inhibited \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}-dependent NO generation. Therefore, CPR catalyzes organic nitrate reduction, producing nitrite, whereas CP can mediate further nitrite reduction to NO. Nitrite-dependent NO generation contributed <10% of the CPR-CP-mediated NO generation from organic nitrates; thus, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} is not the main precursor of NO. CPR-CP-mediated NO generation was largely thiol-dependent. Studies suggested that organic nitrite (R-O-NO) was produced from organic nitrate reduction by CPR. Further reaction of organic nitrite with free or microsome-associated thiols led to NO or nitrosothiol generation and thus stimulated the activation of sGC. Thus, organic nitrite is the initial product in the process of CRP-CP-mediated organic nitrate activation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.


Journal of Biological Chemistry | 2005

Xanthine Oxidase Catalyzes Anaerobic Transformation of Organic Nitrates to Nitric Oxide and Nitrosothiols CHARACTERIZATION OF THIS MECHANISM AND THE LINK BETWEEN ORGANIC NITRATE AND GUANYLYL CYCLASE ACTIVATION

Haitao Li; Hongmei Cui; Xiaoping Liu; Jay L. Zweier

Organic nitrates have been used clinically in the treatment of ischemic heart disease for more than a century. Recently, xanthine oxidase (XO) has been reported to catalyze organic nitrate reduction under anaerobic conditions, but questions remain regarding the initial precursor of nitric oxide (NO) and the link of organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of XO-mediated biotransformation of organic nitrate, studies using electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, NO electrode, and immunoassay were performed. The XO reducing substrates xanthine, NADH, and 2,3-dihydroxybenz-aldehyde triggered the reduction of organic nitrate to nitrite anion (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}). Studies of the pH dependence of nitrite formation indicated that XO-mediated organic nitrate reduction occurred via an acid-catalyzed mechanism. In the absence of thiols or ascorbate, no NO generation was detected from XO-mediated organic nitrate reduction; however, addition of l-cysteine or ascorbate triggered prominent NO generation. Studies suggested that organic nitrite (R-O-NO) is produced from XO-mediated organic nitrate reduction. Further reaction of organic nitrite with thiols or ascorbate leads to the generation of NO or nitrosothiols and thus stimulates the activation of sGC. Only flavin site XO inhibitors such as diphenyleneiodonium inhibited XO-mediated organic nitrate reduction and sGC activation, indicating that organic nitrate reduction occurs at the flavin site. Thus, organic nitrite is the initial product in the process of XO-mediated organic nitrate biotransformation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.


Radicals for Life#R##N#The Various Forms of Nitric Oxide | 2007

CHAPTER 15 – Nitrite as NO donor in cells and tissues

Alexandre Samouilov; Haitao Li; Jay L. Zweier

Publisher Summary Several studies have shown that NOS enzyme-independent NO formation occurs in biological systems. In many disease states, such as ischemia or shock, where acidosis and marked hypoxia occur, this pathway becomes the major source of NO and the magnitude of NO generation can be much greater than that which would be formed by normal tissue concentrations of NOS. The substrate source of this NO formation is nitrite, rather than the NOS substrate and a number of pathways of nitrite reduction to NO are proposed, which include nitrite disproportionation, nitrite reduction by myoglobin, reduction by anoxic mitochondria, by xanthine oxidoreductase, by hemoglobin. Thus, these pathways may “substitute” NO production from NOS in pathophysiological conditions, when NOS function is impaired and conditions might be favorable for nitrite reduction. From first glance, nitrite should display cytoprotective effect, since knockout of endothelial NOS leaves the hearts of mice more sensitive to ischemic damage. Protection should be similar to that observed with NO• donors. In models of infarction, nitrite has been reported to protect against ischemia—reperfusion damage in a way similar to NO donors. However, there is contradiction in literature. Studies in isolated rat hearts suggest that nitrite-derived cellular NO (or its derivatives) may be contributing to damage and, therefore, the effects of NO, derived from nitrite in myocardial injury are uncertain.


Biochemistry | 2003

Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues.

Haitao Li; Alexandre Samouilov; Xiaoping Liu; Jay L. Zweier

Collaboration


Dive into the Haitao Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge