Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haitham Ashoor is active.

Publication


Featured researches published by Haitham Ashoor.


Nucleic Acids Research | 2016

HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models

Ivan V. Kulakovskiy; Ilya E. Vorontsov; Ivan S. Yevshin; Anastasiia V. Soboleva; Artem S. Kasianov; Haitham Ashoor; Wail Ba-alawi; Vladimir B. Bajic; Yulia A. Medvedeva; Fedor A. Kolpakov; Vsevolod J. Makeev

Models of transcription factor (TF) binding sites provide a basis for a wide spectrum of studies in regulatory genomics, from reconstruction of regulatory networks to functional annotation of transcripts and sequence variants. While TFs may recognize different sequence patterns in different conditions, it is pragmatic to have a single generic model for each particular TF as a baseline for practical applications. Here we present the expanded and enhanced version of HOCOMOCO (http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco10), the collection of models of DNA patterns, recognized by transcription factors. HOCOMOCO now provides position weight matrix (PWM) models for binding sites of 601 human TFs and, in addition, PWMs for 396 mouse TFs. Furthermore, we introduce the largest up to date collection of dinucleotide PWM models for 86 (52) human (mouse) TFs. The update is based on the analysis of massive ChIP-Seq and HT-SELEX datasets, with the validation of the resulting models on in vivo data. To facilitate a practical application, all HOCOMOCO models are linked to gene and protein databases (Entrez Gene, HGNC, UniProt) and accompanied by precomputed score thresholds. Finally, we provide command-line tools for PWM and diPWM threshold estimation and motif finding in nucleotide sequences.


Scientific Reports | 2016

Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

Manuel Aranda; Yangyang Li; Yi Jin Liew; Sebastian Baumgarten; Oleg Simakov; Micheal C. Wilson; Jörn Piel; Haitham Ashoor; Salim Bougouffa; Vladimir B. Bajic; Taewoo Ryu; Timothy Ravasi; Till Bayer; Gos Micklem; Hyung Seop Kim; J. Bhak; Todd C. LaJeunesse; Christian R. Voolstra

Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.


Nature Biotechnology | 2017

An integrated expression atlas of miRNAs and their promoters in human and mouse

Derek De Rie; Imad Abugessaisa; Tanvir Alam; Erik Arner; Peter Arner; Haitham Ashoor; Gaby Åström; Magda Babina; Nicolas Bertin; A. Maxwell Burroughs; Ailsa Carlisle; Carsten O. Daub; Michael Detmar; Ruslan Deviatiiarov; Alexandre Fort; Claudia Gebhard; Dan Goldowitz; Sven Guhl; Thomas Ha; Jayson Harshbarger; Akira Hasegawa; Kosuke Hashimoto; Meenhard Herlyn; Peter Heutink; Kelly J Hitchens; Chung Chau Hon; Edward Huang; Yuri Ishizu; Chieko Kai; Takeya Kasukawa

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.


Bioinformatics | 2013

HMCan: a method for detecting chromatin modifications in cancer samples using ChIP-seq data

Haitham Ashoor; Aurélie Hérault; Aurélie Kamoun; François Radvanyi; Vladimir B. Bajic; Emmanuel Barillot; Valentina Boeva

MOTIVATION Cancer cells are often characterized by epigenetic changes, which include aberrant histone modifications. In particular, local or regional epigenetic silencing is a common mechanism in cancer for silencing expression of tumor suppressor genes. Though several tools have been created to enable detection of histone marks in ChIP-seq data from normal samples, it is unclear whether these tools can be efficiently applied to ChIP-seq data generated from cancer samples. Indeed, cancer genomes are often characterized by frequent copy number alterations: gains and losses of large regions of chromosomal material. Copy number alterations may create a substantial statistical bias in the evaluation of histone mark signal enrichment and result in underdetection of the signal in the regions of loss and overdetection of the signal in the regions of gain. RESULTS We present HMCan (Histone modifications in cancer), a tool specially designed to analyze histone modification ChIP-seq data produced from cancer genomes. HMCan corrects for the GC-content and copy number bias and then applies Hidden Markov Models to detect the signal from the corrected data. On simulated data, HMCan outperformed several commonly used tools developed to analyze histone modification data produced from genomes without copy number alterations. HMCan also showed superior results on a ChIP-seq dataset generated for the repressive histone mark H3K27me3 in a bladder cancer cell line. HMCan predictions matched well with experimental data (qPCR validated regions) and included, for example, the previously detected H3K27me3 mark in the promoter of the DLEC1 gene, missed by other tools we tested.


Database | 2015

DENdb: database of integrated human enhancers

Haitham Ashoor; Dimitrios Kleftogiannis; Aleksandar Radovanovic; Vladimir B. Bajic

Enhancers are cis-acting DNA regulatory regions that play a key role in distal control of transcriptional activities. Identification of enhancers, coupled with a comprehensive functional analysis of their properties, could improve our understanding of complex gene transcription mechanisms and gene regulation processes in general. We developed DENdb, a centralized on-line repository of predicted enhancers derived from multiple human cell-lines. DENdb integrates enhancers predicted by five different methods generating an enriched catalogue of putative enhancers for each of the analysed cell-lines. DENdb provides information about the overlap of enhancers with DNase I hypersensitive regions, ChIP-seq regions of a number of transcription factors and transcription factor binding motifs, means to explore enhancer interactions with DNA using several chromatin interaction assays and enhancer neighbouring genes. DENdb is designed as a relational database that facilitates fast and efficient searching, browsing and visualization of information. Database URL: http://www.cbrc.kaust.edu.sa/dendb/


Nucleic Acids Research | 2016

FARNA: knowledgebase of inferred functions of non-coding RNA transcripts.

Tanvir Alam; Mahmut Uludag; Magbubah Essack; Adil Salhi; Haitham Ashoor; John Hanks; Craig Kapfer; Katsuhiko Mineta; Takashi Gojobori; Vladimir B. Bajic

Abstract Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna


Bioinformatics | 2013

Dragon TIS Spotter

Arturo Magana-Mora; Haitham Ashoor; Boris R. Jankovic; Allan Anthony Kamau; Karim Awara; Rajesh Chowdhary; John A. C. Archer; Vladimir B. Bajic

Summary: In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. Availability and implementation: Our tool is implemented as an artificial neural network. It is available as a web-based tool and, together with the source code, the list of features, and data used for model development, is accessible at http://cbrc.kaust.edu.sa/dts. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2018

DDR: Efficient computational method to predict drug–target interactions using graph mining and machine learning approaches

Rawan S Olayan; Haitham Ashoor; Vladimir B. Bajic

Abstract Motivation Finding computationally drug–target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Results We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using 5-repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 31% when the drugs are new, by 23% when targets are new and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs. Availability and implementation The data and code are provided at https://bitbucket.org/RSO24/ddr/. Supplementary information Supplementary data are available at Bioinformatics online.


Nucleic Acids Research | 2018

A novel method for improved accuracy of transcription factor binding site prediction

Abdullah M. Khamis; Olaa Amin Motwalli; Romina Oliva; Boris R. Jankovic; Yulia A. Medvedeva; Haitham Ashoor; Magbubah Essack; Xin Gao; Vladimir B. Bajic

Abstract Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.


Nucleic Acids Research | 2017

HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics.

Haitham Ashoor; Caroline Louis-Brennetot; Isabelle Janoueix-Lerosey; Vladimir B. Bajic; Valentina Boeva

Abstract Comparing histone modification profiles between cancer and normal states, or across different tumor samples, can provide insights into understanding cancer initiation, progression and response to therapy. ChIP-seq histone modification data of cancer samples are distorted by copy number variation innate to any cancer cell. We present HMCan-diff, the first method designed to analyze ChIP-seq data to detect changes in histone modifications between two cancer samples of different genetic backgrounds, or between a cancer sample and a normal control. HMCan-diff explicitly corrects for copy number bias, and for other biases in the ChIP-seq data, which significantly improves prediction accuracy compared to methods that do not consider such corrections. On in silico simulated ChIP-seq data generated using genomes with differences in copy number profiles, HMCan-diff shows a much better performance compared to other methods that have no correction for copy number bias. Additionally, we benchmarked HMCan-diff on four experimental datasets, characterizing two histone marks in two different scenarios. We correlated changes in histone modifications between a cancer and a normal control sample with changes in gene expression. On all experimental datasets, HMCan-diff demonstrated better performance compared to the other methods.

Collaboration


Dive into the Haitham Ashoor's collaboration.

Top Co-Authors

Avatar

Vladimir B. Bajic

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Boris R. Jankovic

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yulia A. Medvedeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dimitrios Kleftogiannis

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

John A. C. Archer

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Karim Awara

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Magbubah Essack

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tanvir Alam

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wail Ba-alawi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Anastasiia V. Soboleva

Moscow Institute of Physics and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge