Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiyan Tong is active.

Publication


Featured researches published by Haiyan Tong.


Environmental Health Perspectives | 2009

Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway

Seung-Hyun Cho; Haiyan Tong; John K. McGee; Richard Baldauf; Q Krantz; Matthew Ian Gilmour

Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Mitochondrial Oxidative Stress in Aortic Stiffening With Age: The Role of Smooth Muscle Cell Function

Rui-Hai Zhou; Aleksandr E. Vendrov; Xi Lin Niu; Kimberly C. Molnar; Mauricio Rojas; Jacqueline D. Carter; Haiyan Tong; George A. Stouffer; Nageswara R. Madamanchi; Marschall S. Runge

Objective—Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and its effect on smooth muscle cell (SMC) function and aortic compliance using mutant mouse models. Methods and Results—Pulse wave velocity, determined using Doppler, increased with age in superoxide dismutase 2 (SOD2)+/− but not in wild-type, p47phox−/− and SOD1+/− mice. Echocardiography showed impaired cardiac function in these mice. Increased collagen I expression, impaired elastic lamellae integrity, and increased medial SMC apoptosis were observed in the aortic wall of aged SOD2+/− versus wild-type (16-month-old) mice. Aortic SMCs from aged SOD2+/− mice showed increased collagen I and decreased elastin expression, increased matrix metalloproteinase-2 expression and activity, and increased sensitivity to staurosporine-induced apoptosis versus aged wild-type and young (4-month-old) SOD2+/− mice. Smooth muscle &agr;-actin levels were increased with age in SOD2+/− versus wild-type SMCs. Aged SOD2+/− SMCs had attenuated insulin-like growth factor-1-induced Akt and Forkhead box O3a phosphorylation and prolonged tumor necrosis factor-&agr;–induced Jun N-terminal kinase 1 activation. Aged SOD2+/− SMCs had increased mitochondrial superoxide but decreased hydrogen peroxide levels. Finally, dominant-negative Forkhead box O3a overexpression attenuated staurosporine-induced apoptosis in aged SOD2+/− SMCs. Conclusion—Mitochondrial oxidative stress over a lifetime causes aortic stiffening, in part by inducing vascular wall remodeling, intrinsic changes in SMC stiffness, and aortic SMC apoptosis.


Cardiovascular Toxicology | 2010

Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice.

Haiyan Tong; Wan-Yun Cheng; James M. Samet; M. Ian Gilmour; Robert B. Devlin

A growing body of evidence from epidemiological and toxicological studies provides a strong link between exposure to ambient particulate matter (PM) of varying size and increased cardiovascular and respiratory morbidity and mortality. This study was designed to evaluate the cardiopulmonary effects of ambient coarse, fine, and ultrafine particles collected in Chapel Hill, NC. Mice were exposed to each size fraction by oropharyngeal instillation. Twenty-four hours later, pulmonary inflammation was assessed by bronchoalveolar lavage and cardiac injury was measured using a Langendorff cardiac perfusion preparation. Recovery of post-ischemic left ventricular developed pressure and infarct size were measured as indeces of cardiac ischemia/reperfusion injury. Coronary flow rate was measured before, during, and after ischemia. We demonstrate that coarse PM caused the most significant pulmonary inflammatory responses. In contrast, hearts from ultrafine-exposed mice had significantly lower post-ischemic functional recovery and greater infarct size, while hearts from coarse and fine PM-exposed mice had no significant responses to ischemia/reperfusion. The coronary flow rate was significantly reduced in the ultrafine PM group. This study shows that exposure of mice to coarse PM results in significant pulmonary toxicity while ultrafine PM appears to enhance cardiac ischemia/reperfusion injury.


Environmental Health Perspectives | 2012

Omega-3 fatty acid supplementation appears to attenuate particulate air pollution-induced cardiac effects and lipid changes in healthy middle-aged adults.

Haiyan Tong; Ana G. Rappold; David Diaz-Sanchez; Susan E. Steck; Jon Berntsen; Wayne E. Cascio; Robert B. Devlin; James M. Samet

Background: Air pollution exposure has been associated with adverse cardiovascular health effects. Findings of a recent epidemiological study suggested that omega-3 fatty acid (fish oil) supplementation blunted cardiac responses to air pollution exposure. Objectives: We conducted a randomized, controlled exposure study to evaluate the efficacy of fish oil supplements in attenuating adverse cardiac effects of exposure to concentrated ambient fine and ultrafine particulate matter (CAP). Methods: Twenty-nine healthy middle-aged participants (mean, 58 ± 1 years of age) were supplemented in a randomized, double-blinded manner with 3 g/day of either fish oil or olive oil for 4 weeks before sequential chamber exposure to filtered air and CAP (mean mass concentration 278 ± 19 µg/m3) for 2 hr. Cardiac responses were assessed by comparing time and frequency domain changes in heart rate variability (HRV) and electrocardiographic repolarization changes measured before, immediately after, and 20 hr after exposure. Changes in plasma lipids were also evaluated at these time points. Results: Fish oil supplementation appeared to attenuate CAP-induced reductions in high-frequency/low-frequency ratio, as well as elevations in normalized low-frequency HRV and prolongation of the QT interval corrected for heart rate (QTc). Very low-density lipoprotein and triglyceride concentrations increased significantly immediately after exposure to CAP in participants supplemented with olive oil, but not in those supplemented with fish oil. Conclusions: Exposure of healthy middle-aged adults to CAP for 2 hr induced acute cardiac and lipid changes after supplementation with olive oil, but not fish oil. Our findings suggest that omega-3 fatty acid supplements offer protection against the adverse cardiac and lipid effects associated with air pollution exposure.


Environmental Health Perspectives | 2010

An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells.

Wan Yun Cheng; Haiyan Tong; Evan W. Miller; Christopher J. Chang; James S. Remington; Robert M. Zucker; Philip A. Bromberg; James M. Samet; Thomas P J Hofer

Background The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn2+ does not generate reactive oxygen species (ROS) through redox cycling. Objective To characterize the role of oxidative stress in zinc-induced toxicity. Methods We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells. Results Zinc treatment in the presence of the Zn2+ ionophore pyrithione of A431 skin carcinoma cells preloaded with the H2O2-specific indicator PG1 resulted in a significant increase in H2O2 production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H2O2 formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts. Conclusion Taken together, these findings show a disruption of mitochondrial integrity, H2O2 formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses.


Particle and Fibre Toxicology | 2014

Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

Nicole Kurhanewicz; Rachel McIntosh-Kastrinsky; Haiyan Tong; Leon Walsh; Aimen K. Farraj; Mehdi S. Hazari

BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g. synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs) and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (O3) co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types.MethodsConscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 μg/m3 FCAPs or 140 μg/m3 UFCAPs with/without 0.3 ppm O3; separate groups were exposed to either filtered air (FA) or O3 alone. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure.ResultsFCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility, whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O3 co-exposure with FCAPs caused a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function. On the other hand, O3 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls.ConclusionsThese data suggest that particle size and gaseous interactions may play a role in cardiac function decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O3 appears to interact differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying this effect may be subtle given none of the exposures described here impaired post-ischemia recovery.


Environmental Health Perspectives | 2015

Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers.

Haiyan Tong; Ana G. Rappold; Melissa C. Caughey; Alan L. Hinderliter; Maryann Bassett; Tracey Montilla; Martin Case; Jon Berntsen; Philip A. Bromberg; Wayne E. Cascio; David Diaz-Sanchez; Robert B. Devlin; James M. Samet

Background Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective In this study we evaluated the potential efficacy of OO and FO in mitigating endothelial dysfunction and disruption of hemostasis caused by exposure to particulate matter (PM). Methods and Results Forty-two participants (58 ± 1 years of age) received either 3 g/day of OO or FO, or no supplements (naive) for 4 weeks prior to undergoing 2-hr exposures to filtered air and concentrated ambient particulate matter (CAP; mean, 253 ± 16 μg/m3). Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery preexposure, immediately postexposure, and 20 hr postexposure. Levels of endothelin-1 and markers of fibrinolysis and inflammation were also measured. The FMD was significantly lower after CAP exposure in the naive (–19.4%; 95% CI: –36.4, –2.3 per 100 μg/m3 CAP relative to baseline; p = 0.03) and FO groups (–13.7%; 95% CI: –24.5, –2.9; p = 0.01), but not in the OO group (–7.6%; 95% CI: –21.5, 6.3; p = 0.27). Tissue plasminogen activator levels were significantly increased immediately after (11.6%; 95% CI: 0.8, 22.2; p = 0.04) and 20 hr after CAP exposure in the OO group. Endothelin-1 levels were significantly increased 20 hr after CAP exposure in the naive group only (17.1%; 95% CI: 2.2, 32.0; p = 0.03). Conclusions Short-term exposure to CAP induced vascular endothelial dysfunction. OO supplementation attenuated CAP-induced reduction of FMD and changes in blood markers associated with vasoconstriction and fibrinolysis, suggesting that OO supplementation may be an efficacious intervention to protect against vascular effects of exposure to PM. Citation Tong H, Rappold AG, Caughey M, Hinderliter AL, Bassett M, Montilla T, Case MW, Berntsen J, Bromberg PA, Cascio WE, Diaz-Sanchez D, Devlin RB, Samet JM. 2015. Dietary supplementation with olive oil or fish oil and vascular effects of concentrated ambient particulate matter exposure in human volunteers. Environ Health Perspect 123:1173–1179; http://dx.doi.org/10.1289/ehp.1408988


Redox biology | 2014

Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells

Phillip A. Wages; Robert Silbajoris; Adam Speen; Luisa E. Brighton; Andres Henriquez; Haiyan Tong; Philip A. Bromberg; Steven O. Simmons; James M. Samet

Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn2+) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.


Inhalation Toxicology | 2014

Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers

Haiyan Tong; Ana G. Rappold; Melissa C. Caughey; Alan L. Hinderliter; Donald W. Graff; Jon Berntsen; Wayne E. Cascio; Robert B. Devlin; James M. Samet

Abstract Context: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust (DE) is a major contributor to ambient PM and gaseous emissions in urban areas. Objective: This was a pilot study designed to evaluate concentration-dependent effects of short-term exposure to whole DE on the cardiovascular system in order to identify a threshold concentration that can elicit biological responses in healthy human volunteers. Materials and methods: Six healthy middle-aged participants with glutathione-S-transferase-Mu 1 (GSTM1) null genotype underwent sequential exposures to 100 µg/m3, 200 µg/m3, and 300 µg/m3 whole DE generated in real time using an idling diesel truck engine. Exposures were separated by 14 d and each was 2 h in duration. Results: We report concentration-dependent effects of exposure to DE, with 100 µg/m3 concentration causing minimal cardiovascular effects, while exposure to 300 µg/m3 DE for 2 h resulted in a borderline significant reduction of baseline brachial artery diameter (3.34 ± 0.27 mm pre- versus 3.23 ± 0.25 mm post-exposure; p = 0.08). Exposure to the highest concentration of DE also resulted in increases of 5 mmHg in diastolic blood pressure as well as a decrease in indices of the frequency domain of heart rate variability (HRV). Discussion and conclusions: These findings demonstrate that acute exposure to relatively high concentrations of DE produces cardiovascular changes in middle-aged GSTM1 null individuals. This study therefore suggests that arterial vasoconstriction and changes in HRV are responses through which traffic-related air pollution increases the risk of adverse cardiovascular outcomes.


Chemical Research in Toxicology | 2015

Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect

Andrew J. Ghio; Joleen M. Soukup; Lisa A. Dailey; Haiyan Tong; Matthew J. Kesic; G. R. Scott Budinger; Gökhan M. Mutlu

The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 μg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 μg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response.

Collaboration


Dive into the Haiyan Tong's collaboration.

Top Co-Authors

Avatar

James M. Samet

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Robert B. Devlin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne E. Cascio

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Alan L. Hinderliter

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ana G. Rappold

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jon Berntsen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

M. Ian Gilmour

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Ghio

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jacqueline D. Carter

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge