Hala Darwish
American University of Beirut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hala Darwish.
Journal of Neuroinflammation | 2012
Teresita L. Briones; Hala Darwish
BackgroundIncreasing evidence shows an association between the use of vitamin D and improvement in age-related cognitive decline. In this study, we investigated the possible mechanisms involved in the neuroprotective effects of vitamin D on age-related brain changes and cognitive function.MethodsMale F344 rats aged 20 months (old) and 6 months (young) were used and randomly assigned to either vitamin D supplementation or no supplementation (control). A total of n = 39 rats were used in the study. Rats were individually housed and the supplementation group received a subcutaneous injection of vitamin D (1, α25-dihydroxyvitamin D3) 42 I.U./Kg for 21 days. Control animals received equal volume of normal saline. Behavioral testing in water maze and spontaneous object recognition tasks started on day 14. Levels of interleukin (IL)-1β and IL-10 were quantified to assess inflammatory state. Also, beta amyloid (Aβ) clearance and Aβ load were measured.ResultsOur results show that: (1) aged rats demonstrated significant learning and memory impairment overall compared to younger animals. However, the age-related decline in learning and memory was ameliorated by the supplementation of vitamin D. No vitamin D effect on learning and memory was seen in the young animals; 2) the pro-inflammatory cytokine IL-1β is significantly increased while the anti-inflammatory cytokine IL-10 is significantly decreased in the aged rats compared to the young animals; but this age-related change in inflammatory state was mitigated by vitamin D supplementation. No effects of vitamin D were seen on the IL-1β and IL-10 expression in the young rats; (3) vitamin D increased Aβ clearance and decreased amyloid burden in the aged rats while no significant difference was seen between the young animal groups.ConclusionsOur data suggest that vitamin D supplementation modulated age-related increase in pro-inflammatory state and amyloid burden. It is possible that these effects of vitamin D mediated the decrease memory impairment seen in the aged rats making it a useful therapeutic option to alleviate the effects of aging on cognitive function.
Neuroscience | 2014
Teresita L. Briones; Hala Darwish
In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.
Electrophoresis | 2016
Hussein Abou-Abbass; Hadi Abou-El-Hassan; Hisham Bahmad; Kazem Zibara; Abir Zebian; Rabab Youssef; Joy Ismail; Rui Zhu; Shiyue Zhou; Xue Dong; Mayse Nasser; Marwan Bahmad; Hala Darwish; Yehia Mechref; Firas Kobeissy
Traumatic brain injuries (TBIs) present a chief public health threat affecting nations worldwide. As numbers of patients afflicted by TBI are expected to rise, the necessity to increase our understanding of the pathophysiological mechanism(s) as a result of TBI mounts. TBI is known to augment the risk of developing a number of neurodegenerative diseases (NDs) such as Alzheimers disease (AD) and Parkinsons disease (PD). Hence, it is rational to assume that a common mechanistic ground links the pathophysiology of NDs to that of TBIs. Through this review, we aim to identify the protein–protein interactions, differential proteins expression, and PTMs, mainly glycosylation, that are involved in the pathogenesis of both ND and TBI. OVID and PubMed have been rigorously searched to identify studies that utilized advanced proteomic platforms (MS based) and systems biology tools to unfold the mechanism(s) behind ND in an attempt to unveil the mysterious biological processes that occur postinjury. Various PTMs have been found to be common between TBI and AD, whereas no similarities have been found between TBI and PD. Phosphorylated tau protein, glycosylated amyloid precursor protein, and many other modifications appear to be common in both TBI and AD. PTMs, differential protein profiles, and altered biological pathways appear to have critical roles in ND processes by interfering with their pathological condition in a manner similar to TBI. Advancement in glycoproteomic studies pertaining to ND and TBI is urgently needed in order to develop better diagnostic tools, therapies, and more favorable prognoses.
Electrophoresis | 2016
Hussein Abou Abbass; Hadi Abou El Hassan; Hisham Bahmad; Abir Zebian; Rabab Youssef; Joy Ismail; Rui Zhu; Shiyue Zhou; Xue Dong; Mayse Nasser; Marwan Bahmad; Hala Darwish; Yehia Mechref; Firas Kobeissy
Traumatic brain injuries (TBIs) present a chief public health threat affecting nations worldwide. As numbers of patients afflicted by TBI are expected to rise, the necessity to increase our understanding of the pathophysiological mechanism(s) as a result of TBI mounts. TBI is known to augment the risk of developing a number of neurodegenerative diseases (NDs) such as Alzheimers disease (AD) and Parkinsons disease (PD). Hence, it is rational to assume that a common mechanistic ground links the pathophysiology of NDs to that of TBIs. Through this review, we aim to identify the protein–protein interactions, differential proteins expression, and PTMs, mainly glycosylation, that are involved in the pathogenesis of both ND and TBI. OVID and PubMed have been rigorously searched to identify studies that utilized advanced proteomic platforms (MS based) and systems biology tools to unfold the mechanism(s) behind ND in an attempt to unveil the mysterious biological processes that occur postinjury. Various PTMs have been found to be common between TBI and AD, whereas no similarities have been found between TBI and PD. Phosphorylated tau protein, glycosylated amyloid precursor protein, and many other modifications appear to be common in both TBI and AD. PTMs, differential protein profiles, and altered biological pathways appear to have critical roles in ND processes by interfering with their pathological condition in a manner similar to TBI. Advancement in glycoproteomic studies pertaining to ND and TBI is urgently needed in order to develop better diagnostic tools, therapies, and more favorable prognoses.
Clinical Immunology | 2015
Tarek H. Mouhieddine; Hala Darwish; Lama Fawaz; Bassem Yamout; Hani Tamim; Samia J. Khoury
Multiple sclerosis (MS) is an inflammatory demyelination of the central nervous system. We investigated the prevalence of EBV seropositivity and other known risk factors for MS (age, smoking, low vitamin D) and their effect on anti-EBV antibody titers. We retrospectively studied 249 MS patients receiving care at the American University of Beirut Medical Center and 230 controls, during 2010-2014. EBV seropositivity was higher in MS patients compared to controls for both anti-VCA (99.5%; 97.2%) and anti-EBNA-1 (96.3%; 89.4%), and the titers were significantly higher in MS patients. MS patients had a significantly lower vitamin D level (15.5 ± 8.3 ng/ml) compared to controls (20.4 ± 11.3 ng/ml). The proportion of heavy smokers and overweight individuals was significantly higher in MS patients. Lebanese MS patients have risk factors similar to those in western countries. Older age and female gender were associated with a higher anti-VCA titer and male gender with a higher anti-EBNA-1.
Brain Injury | 2014
Hala Darwish; Asim Mahmood; Timothy Schallert; Michael Chopp; Barbara Therrien
Abstract Primary objective: The purpose of this study was to investigate the effect of mild-to- moderate (m-mod) traumatic brain injury (TBI) on spontaneous object (SO) recognition and temporal order (TO) memory in male Wistar rats and to compare the effects of environmental enrichment (EE) and simvastatin (Sim) on SO and TO memory post-injury. Research design: A randomized repeated measure experimental design was used. Methods and procedure: Seven days after arrival, animals received the injury or sham surgery. Using a Y-shaped maze, SO and TO memory was assessed in the two groups of animals at 6, 24, 48, 72 hours and 7, 14, 21 and 35 days post-surgery. Total time exploring each object and discrimination ratio were calculated and analysed. Then SO and TO memory were compared between two groups that received either Sim or EE for 2 hours daily starting 24 hours post-injury and a sham group that received saline for 14 days post-injury. Results: The results showed that the injury impaired SO and TO memory compared to the sham up to 35 days post-trauma. Injured animals exhibited familiarity preference, novelty aversion and impaired TO performance. EE improved the animals’ SO recognition deficits 7 days post-injury after a shorter delay (1 minute) only and Sim reversed TO memory deficits 14 days post-injury after a longer delay (60 minutes). Conclusion: Persistent SO and TO memory deficits follow TBI in animals; Simv and EE seem to be promising therapies of TBI memory deficits.
Behavioural Brain Research | 2018
Hussein Ghazale; Naify Ramadan; Sara Mantash; Kazem Zibara; Sally El-Sitt; Hala Darwish; Farah Chamaa; Rose-Mary Boustany; Stefania Mondello; Wassim Abou-Kheir; Jihane Soueid; Firas Kobeissy
HighlightsNSC transplantation coupled with DHA injections enhance motor recovery three weeks post mild TBI.Endogenous neurogenesis is significantly enhanced after NSC transplantation coupled with DHA injections post mild‐TBI.NSC transplantation coupled with DHA injections increase glial reactivity and microglia post mild‐TBI.NSC transplantation coupled with DHA reduceTBI‐ induced dopaminergic neurons depletion in the midbrain. ABSTRACT Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule‐1, IBA‐1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI‐induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA + NSCs treated animals showed decreased levels of 38 kDa GFAP‐BDP (breakdown product) and 145 kDa &agr;II‐spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
Scientific Reports | 2017
Hala Darwish; Ribal Haddad; Sahar Osman; Stephanie Ghassan; Bassem Yamout; Hani Tamim; Samia J. Khoury
Multiple Sclerosis is associated with deficient serum 25 hydroxyvitamin D (25 (OH)D) level and cognitive impairment. The aim of this study is to evaluate cognitive performance in MS patients with deficient 25 (OH)D (<25 ng/ml) compared to patients with sufficient levels (>35 ng/ml), then to evaluate the change in cognitive performance after 3 months of vitamin D3 oral replacement. Eighty-eight MS patients with relapsing remitting and clinically isolated type of MS, older than 18 years treated with interferon beta were enrolled. Cognitive testing was performed at baseline and at 3 months using the Montreal Cognitive Assessment (MoCA), Stroop, Symbol Digit Modalities (SDMT) and Brief Visuospatial Memory Test (BVMT-R). Serum 25 (OH)D was measured at baseline and at the end of the study. Vitamin D3 replacement improved the MS patients’ cognitive performance after 3 months on the MoCA and BVMT-Delayed Recall (DR). Sufficient serum 25 (OH)D level predicted better cognitive performance on the BVMT-DR at baseline (β: 1.74, p: <0.008) and 3 months (β: 1.93, p: <0.01) after adjusting for all measured confounding variables. Vitamin D3 replacement could improve cognitive performance in MS patients and make a significant difference in the patient’s quality of life.
Electrophoresis | 2016
Hussein Abou-Abbass; Hisham Bahmad; Hadi Abou-El-Hassan; Rui Zhu; Shiyue Zhou; Xue Dong; Eva Hamade; Khalil Mallah; Abir Zebian; Naify Ramadan; Stefania Mondello; Jawad Fares; Youssef Comair; Samir Atweh; Hala Darwish; Kazem Zibara; Yehia Mechref; Firas Kobeissy
As populations age, the number of patients sustaining traumatic brain injury (TBI) and concomitantly receiving preinjury antiplatelet therapy such as aspirin (ASA) and clopidogrel (CLOP) is rising. These drugs have been linked with unfavorable clinical outcomes following TBI, where the exact mechanism(s) involved are still unknown. In this novel work, we aimed to identify and compare the altered proteome profile imposed by ASA and CLOP when administered alone or in combination, prior to experimental TBI. Furthermore, we assessed differential glycosylation PTM patterns following experimental controlled cortical impact model of TBI, ASA, CLOP, and ASA + CLOP. Ipsilateral cortical brain tissues were harvested 48 h postinjury and were analyzed using an advanced neuroproteomics LC‐MS/MS platform to assess proteomic and glycoproteins alterations. Of interest, differential proteins pertaining to each group (22 in TBI, 41 in TBI + ASA, 44 in TBI + CLOP, and 34 in TBI + ASA + CLOP) were revealed. Advanced bioinformatics/systems biology and clustering analyses were performed to evaluate biological networks and protein interaction maps illustrating molecular pathways involved in the experimental conditions. Results have indicated that proteins involved in neuroprotective cellular pathways were upregulated in the ASA and CLOP groups when given separately. However, ASA + CLOP administration revealed enrichment in biological pathways relevant to inflammation and proinjury mechanisms. Moreover, results showed differential upregulation of glycoproteins levels in the sialylated N‐glycans PTMs that can be implicated in pathological changes. Omics data obtained have provided molecular insights of the underlying mechanisms that can be translated into clinical bedside settings.
Electrophoresis | 2016
Hussein Abou Abbass; Hisham Bahmad; Hadi Abou El Hassan; Rui Zhu; Shiyue Zhou; Xue Dong; Eva Hamade; Khalil Mallah; Abir Zebian; Naify Ramadan; Stefania Mondello; Jawad Fares; Youssef Comair; Samir Atweh; Hala Darwish; Kazem Zibara; Yehia Mechref; Firas Kobeissy
As populations age, the number of patients sustaining traumatic brain injury (TBI) and concomitantly receiving preinjury antiplatelet therapy such as aspirin (ASA) and clopidogrel (CLOP) is rising. These drugs have been linked with unfavorable clinical outcomes following TBI, where the exact mechanism(s) involved are still unknown. In this novel work, we aimed to identify and compare the altered proteome profile imposed by ASA and CLOP when administered alone or in combination, prior to experimental TBI. Furthermore, we assessed differential glycosylation PTM patterns following experimental controlled cortical impact model of TBI, ASA, CLOP, and ASA + CLOP. Ipsilateral cortical brain tissues were harvested 48 h postinjury and were analyzed using an advanced neuroproteomics LC‐MS/MS platform to assess proteomic and glycoproteins alterations. Of interest, differential proteins pertaining to each group (22 in TBI, 41 in TBI + ASA, 44 in TBI + CLOP, and 34 in TBI + ASA + CLOP) were revealed. Advanced bioinformatics/systems biology and clustering analyses were performed to evaluate biological networks and protein interaction maps illustrating molecular pathways involved in the experimental conditions. Results have indicated that proteins involved in neuroprotective cellular pathways were upregulated in the ASA and CLOP groups when given separately. However, ASA + CLOP administration revealed enrichment in biological pathways relevant to inflammation and proinjury mechanisms. Moreover, results showed differential upregulation of glycoproteins levels in the sialylated N‐glycans PTMs that can be implicated in pathological changes. Omics data obtained have provided molecular insights of the underlying mechanisms that can be translated into clinical bedside settings.