Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazem Zibara is active.

Publication


Featured researches published by Kazem Zibara.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Modulation of expression of endothelial intercellular adhesion molecule-1, platelet-endothelial cell adhesion molecule-1, and vascular cell adhesion molecule-1 in aortic arch lesions of apolipoprotein E-deficient compared with wild-type mice.

Kazem Zibara; Elza Chignier; Chantal Covacho; Robin Poston; Georges Canard; Patrick Hardy; John L. McGregor

Human vascular adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), platelet–endothelial cell adhesion molecule-1 (PECAM-1), and vascular cell adhesion molecule-1 (VCAM-1), are thought to play a critical role in the homing of leukocytes to sites of atherosclerotic lesions. However, very little is known about the expression of adhesion molecules in the vasculature of mice models, such as apolipoprotein E knockout (apoE−/−) mice, the lesions of which closely mimic human atherosclerotic lesions. This study has first quantitatively characterized the mean expression of endothelial adhesion molecules, lining the whole vessel intimal circumference, over a period of time (0 to 20 weeks of diet) in aortic arch lesions of male apoE-deficient compared with wild-type (C57BL/6) mice. These animals were fed a chow or a cholesterol-rich diet. ApoE−/− animals showed first an increase (at 6 weeks) and then a reduction (at 16 weeks) in the mean expression of ICAM-1 (P <0.05) and PECAM-1 (P <0.05) but not VCAM-1 levels. Such modulation of the mean expression of adhesion molecules was not observed in wild-type mice. Confirmation of immunohistochemistry results on ICAM-1 was obtained by Northern blots performed on the aortic arch of apoE and C57BL6 chow-fed mice over a period of 20 weeks. Moreover, the presence of VCAM-1 was also confirmed at the RNA level, on aortas of control and apoE mice, by reverse transcription–polymerase chain reaction. In the second part of the study, we assayed the levels of adhesion molecules, in different types of histologically defined atherosclerotic lesions, in apoE−/− animals fed for 20 weeks. All 3 adhesion molecules (ICAM-1, PECAM-1, and VCAM-1) were observed to be reduced in fibrofatty and complex lesions but not in fatty streaks or in areas without lesions. These results indicate that the expression of these adhesion molecules in apoE-deficient animals varies with the evolution of the plaque from a fatty to a fibrous stage.


Blood | 2015

Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells

El Hajj H; Zeina Dassouki; Caroline Berthier; Raffoux E; Ades L; Ollivier Legrand; Rita Hleihel; Sahin U; Nadim Tawil; Salameh A; Kazem Zibara; Nadine Darwiche; Mohamad Mohty; Dombret H; Fenaux P; Ali Bazarbachi

Nucleophosmin-1 (NPM1) is the most frequently mutated gene in acute myeloid leukemia (AML). Addition of retinoic acid (RA) to chemotherapy was proposed to improve survival of some of these patients. Here, we found that RA or arsenic trioxide synergistically induce proteasomal degradation of mutant NPM1 in AML cell lines or primary samples, leading to differentiation and apoptosis. NPM1 mutation not only delocalizes NPM1 from the nucleolus, but it also disorganizes promyelocytic leukemia (PML) nuclear bodies. Combined RA/arsenic treatment significantly reduced bone marrow blasts in 3 patients and restored the subnuclear localization of both NPM1 and PML. These findings could explain the proposed benefit of adding RA to chemotherapy in NPM1 mutant AMLs, and warrant a broader clinical evaluation of regimen comprising a RA/arsenic combination.


Nucleic Acids Research | 2016

smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability

Nikolay Tsanov; Aubin Samacoits; Racha Chouaib; Abdel-Meneem Traboulsi; Thierry Gostan; Christian Weber; Christophe Zimmer; Kazem Zibara; Thomas Walter; Marion Peter; Edouard Bertrand; Florian Mueller

Single molecule FISH (smFISH) allows studying transcription and RNA localization by imaging individual mRNAs in single cells. We present smiFISH (single molecule inexpensive FISH), an easy to use and flexible RNA visualization and quantification approach that uses unlabelled primary probes and a fluorescently labelled secondary detector oligonucleotide. The gene-specific probes are unlabelled and can therefore be synthesized at low cost, thus allowing to use more probes per mRNA resulting in a substantial increase in detection efficiency. smiFISH is also flexible since differently labelled secondary detector probes can be used with the same primary probes. We demonstrate that this flexibility allows multicolor labelling without the need to synthesize new probe sets. We further demonstrate that the use of a specific acrydite detector oligonucleotide allows smiFISH to be combined with expansion microscopy, enabling the resolution of transcripts in 3D below the diffraction limit on a standard microscope. Lastly, we provide improved, fully automated software tools from probe-design to quantitative analysis of smFISH images. In short, we provide a complete workflow to obtain automatically counts of individual RNA molecules in single cells.


Scientific Reports | 2015

Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo

Kazem Zibara; Zahraa Awada; Leila Dib; Jamal El-Saghir; Sara Al-Ghadban; Aida Ibrik; Nabil El-Zein; Marwan El-Sabban

Cancer cells secrete VEGF, which plays a key role in their growth, invasion, extravasation and metastasis. Direct cancer cell-endothelial cell interaction, mediated by gap junctions, is of critical importance in the extravasation process. In this study, we evaluated avastin (Av), an anti-VEGF antibody; and oleamide (OL), a gap junction inhibitor, using MDA-MB-231 human breast cancer cells in vitro and a xenograft murine model in vivo. Results showed that Av/OL significantly decreased proliferation, induced cell cycle arrest and decreased migration and invasion of MDA-MB-231 cells in vitro. In addition, Av/OL significantly decreased homo and hetero-cellular communication interaction between MDA-MDA and MDA-endothelial cells, respectively. The expression levels of several factors including VEGF, HIF1α, CXCR4, Cx26, Cx43, and MMP9 were attenuated upon Av/OL treatment in vitro. On the other hand, avastin, but not oleamide, reduced tumor size of NSG mice injected subdermally (s.d.) with MDA-MB-231 cells, which was also associated with increased survival. Furthermore, Av but also OL, separately, significantly increased the survival rate, and reduced pulmonary and hepatic metastatic foci, of intravenously (i.v.) injected mice. Finally, OL reduced MMP9 protein expression levels, better than Av and in comparisons to control, in the lungs of MDA-MB-231 i.v. injected NSG mice. In conclusion, while avastin has anti-angiogenic, anti-tumor and anti-metastatic activities, oleamide has anti-metastatic activity, presumably at the extravasation level, providing further evidence for the role of gap junction intercellular communication (GJIC) in cancer cell extravasation.


Molecular Cancer | 2014

The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway

Khaled I. Ghattass; Sally El-Sitt; Kazem Zibara; Saide Rayes; Makhluf J. Haddadin; Marwan El-Sabban; Hala Gali-Muhtasib

BackgroundAlthough tumor hypoxia poses challenges against conventional cancer treatments, it provides a therapeutic target for hypoxia-activated drugs. Here, we studied the effect of the hypoxia-activated synthetic quinoxaline di-N-oxide DCQ against breast cancer metastasis and identified the underlying mechanisms.MethodsThe human breast cancer cell lines MCF-7 (p53 wildtype) and MDA-MB-231 (p53 mutant) were treated with DCQ under normoxia or hypoxia. Drug toxicity on non-cancerous MCF-10A breast cells was also determined. In vitro cellular responses were investigated by flow cytometry, transfection, western blotting, ELISA and migration assays. The anti-metastatic effect of DCQ was validated in the MDA-MB-231 xenograft mouse model.ResultsDCQ selectively induced apoptosis in both human breast cancer cells preferentially under hypoxia without affecting the viability of non-cancerous MCF-10A. Cancer cell death was associated with an increase in reactive oxygen species (ROS) independently of p53 and was inhibited by antioxidants. DCQ-induced ROS was associated with DNA damage, the downregulation of hypoxia inducible factor-1 alpha (HIF-1α), and inhibition of vascular endothelial growth factor (VEGF) secretion. In MCF-7, HIF-1α inhibition was partially via p53-activation and was accompanied by a decrease in p-mTOR protein, suggesting interference with HIF-1α translation. In MDA-MB-231, DCQ reduced HIF-1α through proteasomal-dependent degradation mechanisms. HIF-1α inhibition by DCQ blocked VEGF secretion and invasion in MCF-7 and led to the inhibition of TWIST in MDA-MB-231. Consistently, DCQ exhibited robust antitumor activity in MDA-MB-231 breast cancer mouse xenografts, enhanced animal survival, and reduced metastatic dissemination to lungs and liver.ConclusionDCQ is the first hypoxia-activated drug showing anti-metastatic effects against breast cancer, suggesting its potential use for breast cancer therapy.


Disease Models & Mechanisms | 2016

Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia.

Karim Si-Tayeb; Salam Idriss; Benoite Champon; Amandine Caillaud; Matthieu Pichelin; Lucie Arnaud; Patricia Lemarchand; Cédric Le May; Kazem Zibara; Bertrand Cariou

ABSTRACT Proprotein convertase subtilisin kexin type 9 (PCSK9) is a critical modulator of cholesterol homeostasis. Whereas PCSK9 gain-of-function (GOF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis, PCSK9 loss-of-function (LOF) mutations have a cardio-protective effect and in some cases can lead to familial hypobetalipoproteinemia (FHBL). However, limitations of the currently available cellular models preclude deciphering the consequences of PCSK9 mutation further. We aimed to validate urine-sample-derived human induced pluripotent stem cells (UhiPSCs) as an appropriate tool to model PCSK9-mediated ADH and FHBL. To achieve our goal, urine-sample-derived somatic cells were reprogrammed into hiPSCs by using episomal vectors. UhiPSC were efficiently differentiated into hepatocyte-like cells (HLCs). Compared to control cells, cells originally derived from an individual with ADH (HLC-S127R) secreted less PCSK9 in the media (−38.5%; P=0.038) and had a 71% decrease (P<0.001) of low-density lipoprotein (LDL) uptake, whereas cells originally derived from an individual with FHBL (HLC-R104C/V114A) displayed a strong decrease in PCSK9 secretion (−89.7%; P<0.001) and had a 106% increase (P=0.0104) of LDL uptake. Pravastatin treatment significantly enhanced LDL receptor (LDLR) and PCSK9 mRNA gene expression, as well as PCSK9 secretion and LDL uptake in both control and S127R HLCs. Pravastatin treatment of multiple clones led to an average increase of LDL uptake of 2.19±0.77-fold in HLC-S127R compared to 1.38±0.49 fold in control HLCs (P<0.01), in line with the good response to statin treatment of individuals carrying the S127R mutation (mean LDL cholesterol reduction=60.4%, n=5). In conclusion, urine samples provide an attractive and convenient source of somatic cells for reprogramming and hepatocyte differentiation, but also a powerful tool to further decipher PCSK9 mutations and function. Summary: The authors used urine-sample-derived patient-specific human induced pluripotent stem cells to generate hepatocytes carrying gain- or loss-of-function mutations of PCSK9, and mimicking the pathophysiology in vitro.


Scientific Reports | 2016

Assessment of Serum UCH-L1 and GFAP in Acute Stroke Patients

Changhong Ren; Firas Kobeissy; Ali Alawieh; Na Li; Ning Li; Kazem Zibara; Susie Zoltewicz; Joy Guingab-Cagmat; Stephen F. Larner; Yuchuan Ding; Ronald L. Hayes; Xunming Ji; Stefania Mondello

A rapid and reliable diagnostic test to distinguish ischemic from hemorrhagic stroke in patients presenting with stroke-like symptoms is essential to optimize management and triage for thrombolytic therapy. The present study measured serum concentrations of ubiquitin C-terminal hydrolase (UCH-L1) and glial fibrillary astrocytic protein (GFAP) in acute stroke patients and healthy controls and investigated their relation to stroke severity and patient characteristics. We also assessed the diagnostic performance of these markers for the differentiation of intracerebral hemorrhage (ICH) from ischemic stroke (IS). Both UCH-L1 and GFAP concentrations were significantly greater in ICH patients than in controls (p < 0.0001). However, exclusively GFAP differed in ICH compared with IS (p < 0.0001). GFAP yielded an AUC of 0.86 for differentiating between ICH and IS within 4.5hrs of symptom onset with a sensitivity of 61% and a specificity of 96% using a cut-off of 0.34ng/ml. Higher GFAP levels were associated with stroke severity and history of prior stroke. Our results demonstrate that blood UCH-L1 and GFAP are increased early after stroke and distinct biomarker-specific release profiles are associated with stroke characteristics and type. We also confirmed the potential of GFAP as a tool for early rule-in of ICH, while UCH-L1 was not clinically useful.


Journal of the American Heart Association | 2015

Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome

Mariam Jouni; Karim Si-Tayeb; Zeineb Es-Salah-Lamoureux; Xenia Latypova; Benoite Champon; Amandine Caillaud; Anais Rungoat; Flavien Charpentier; Gildas Loussouarn; Isabelle Baró; Kazem Zibara; Patricia Lemarchand; Nathalie Gaborit

Background Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients’ genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell–derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients’ specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients’ specific arrhythmia mechanisms. Methods and Results Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method. UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial- and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient’s UhiPS-CMs to the mother’s UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier K+ current (IKr). This phenotype gave rise to action potential prolongation and arrhythmias. Conclusions UhiPS cells from patients carrying ion channel mutations can be used as novel tools to differentiate functional CMs that recapitulate cardiac arrhythmia phenotypes.


Frontiers in Pharmacology | 2016

Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway

Wared Nour-Eldine; Crystal M. Ghantous; Kazem Zibara; Leila Dib; Hawraa Issaa; Hana A. Itani; Nabil El-Zein; Asad Zeidan

Introduction: Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. Methods and Results: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. Conclusion: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.


Electrophoresis | 2016

Glycosylation and other PTMs alterations in neurodegenerative diseases: Current status and future role in neurotrauma

Hussein Abou-Abbass; Hadi Abou-El-Hassan; Hisham Bahmad; Kazem Zibara; Abir Zebian; Rabab Youssef; Joy Ismail; Rui Zhu; Shiyue Zhou; Xue Dong; Mayse Nasser; Marwan Bahmad; Hala Darwish; Yehia Mechref; Firas Kobeissy

Traumatic brain injuries (TBIs) present a chief public health threat affecting nations worldwide. As numbers of patients afflicted by TBI are expected to rise, the necessity to increase our understanding of the pathophysiological mechanism(s) as a result of TBI mounts. TBI is known to augment the risk of developing a number of neurodegenerative diseases (NDs) such as Alzheimers disease (AD) and Parkinsons disease (PD). Hence, it is rational to assume that a common mechanistic ground links the pathophysiology of NDs to that of TBIs. Through this review, we aim to identify the protein–protein interactions, differential proteins expression, and PTMs, mainly glycosylation, that are involved in the pathogenesis of both ND and TBI. OVID and PubMed have been rigorously searched to identify studies that utilized advanced proteomic platforms (MS based) and systems biology tools to unfold the mechanism(s) behind ND in an attempt to unveil the mysterious biological processes that occur postinjury. Various PTMs have been found to be common between TBI and AD, whereas no similarities have been found between TBI and PD. Phosphorylated tau protein, glycosylated amyloid precursor protein, and many other modifications appear to be common in both TBI and AD. PTMs, differential protein profiles, and altered biological pathways appear to have critical roles in ND processes by interfering with their pathological condition in a manner similar to TBI. Advancement in glycoproteomic studies pertaining to ND and TBI is urgently needed in order to develop better diagnostic tools, therapies, and more favorable prognoses.

Collaboration


Dive into the Kazem Zibara's collaboration.

Top Co-Authors

Avatar

Firas Kobeissy

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Naify Ramadan

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Hala Darwish

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge