Hamad A. Al-Lohedan
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamad A. Al-Lohedan.
Journal of Photochemistry and Photobiology B-biology | 2016
S. K. Jesudoss; J. Judith Vijaya; L. John Kennedy; P. Iyyappa Rajan; Hamad A. Al-Lohedan; R. Jothi Ramalingam; K. Kaviyarasu; M. Bououdina
The present work describes the successful synthesize of spinel magnetic ferrite Mn1-xNixFe2O4 (x=0.0, 0.1, 0.2, 0.3, 0.4 & 0.5) nanoparticles via a simple microwave combustion method which was then evaluated for its photocatalytic activity in the degradation of indigo carmine (IC) synthetic dye, a major water pollutant. Our results reveal that the synthesized of Ni2+ doped MnFe2O4 nanoparticles possess well-crystalline pure cubic spinel phase, exhibit excellent optical and magnetic properties. Further, the photocatalytic performance of the synthesized nanoparticles at different concentration ratios of Ni2+ ions was monitored by photocatalytic degradation of indigo carmine synthetic dye under UV (λ=365nm) light irradiation. In order to get maximum photocatalytic degradation (PCD) efficiency, we have optimized various parameters, which include catalyst dosage, initial dye concentration, pH and Ni2+ dopant content. It was found that the reaction was facilitated with optimum catalyst dose of 50mg/100mL, high dye concentrations of 150mg/L and acidic pH and among all the synthesized samples, Mn0·5Ni0.5Fe2O4 exhibit superior performance of photocatalytic activity on the degradation of indigo carmine synthetic dye. These results highlighted the potential use of effective, low-cost and easily available photocatalysts for the promotion of wastewater treatment and environmental remediation. In addition, the antibacterial activity of spinel magnetic Mn1-xNixFe2O4 nanoparticles against two Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli) was also examined. Our antibacterial activity results are comparable with the results obtained using the antibiotic, streptomycin.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
Mohd. Sajid Ali; Hamad A. Al-Lohedan; M.Z.A. Rafiquee; Ayman M. Atta; Abdurrahman O. Ezzat
Silver nanoparticles were functionalized with polyvinylthiol (Ag-PVT) and their effect on the conformation of hen-egg white lysozyme was seen by means of spectroscopic techniques, viz., UV visible, fluorescence (intrinsic and synchronous), resonance Rayleigh scattering and circular dichroism. UV absorption spectra of lysozyme show a hyperchromic shift on the addition of Ag-PVT nanoparticles indicating the complex formation between the two. The interaction between lysozyme and Ag-PVT nanoparticles was takes place via static quenching with 1:1 binding ratio as revealed by the analysis of fluorescence measurements. Circular dichroism spectroscopic data show a decrease in α-helical content of lysozyme on interaction with Ag-PVT nanoparticles which was due to the partial unfolding of the protein. Synchronous fluorescence spectroscopy disclosed that the microenvironments of both tryptophan and tyrosine residues were perturbed in the presence of Ag-PVT nanoparticles and perturbation in the tryptophan environment was more prominent. Rayleigh scattering (RRS) intensity increases on increasing the Ag-PVT nanoparticles concentration till it reaches to the saturation. The RRS intensity increases four times as compared to the native protein indicating the possibility of protein aggregation at higher concentrations of nanoparticles.
RSC Advances | 2014
Muhammad Ajmal; Mohammed Siddiq; Hamad A. Al-Lohedan; Nurettin Sahiner
Poly(methacrylic acid) (p(MAc)) microgels were synthesized by inverse suspension polymerization and used as a template for copper, nickel, and cobalt nanoparticle preparation. Upon absorption of Co(II), Ni(II), and Cu(II) by p(MAc) microgels from related aqueous solutions, the metal ion laden microgels were treated with sodium borohydride (NaBH4) to obtain the corresponding metal nanoparticles within the p(MAc) network as p(MAc)–M (M: Co, Ni, Cu). The microgels and metal nanoparticle containing composites were visualized and analyzed by Optical Microscopy, SEM, and TEM analysis. Thermal properties and the metal nanoparticle content of the prepared composites were investigated by TG analysis. However, the exact amounts of metal nanoparticles entrapped within the microgels was calculated by AAS measurements after dissolution of the metal nanoparticles within p(MAc) the microgel composites by concentrated HCl acid treatment. The prepared p(MAc)–M composites were employed as a catalyst for the degradation of some organic dyes such as Eosin Y (EY), and methyl orange (MO), and reduction of nitro aromatic pollutants such as 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) to their corresponding amino phenols. More importantly, we report the simultaneous degradation of EY and 4-NP reduction catalyzed by p(MAc)–Cu microgel composites. Various parameters effecting the degradation of dyes and nitro compound reduction such as metal types, and their amounts, temperature and amount of reducing agent were investigated.
Journal of Photochemistry and Photobiology B-biology | 2017
N. Jayaprakash; J. Judith Vijaya; K. Kaviyarasu; K. Kombaiah; L. John Kennedy; R. Jothi Ramalingam; Murugan A. Munusamy; Hamad A. Al-Lohedan
In the present study, first time we report the microwave-assisted green synthesis of silver nanoparticles (AgNPs) using Tamarindus indica natural fruit extract. The plant extract plays a dual role of reducing and capping agent for the synthesis of AgNPs. The formation of spherical shape AgNPs is confirmed by XRD, HR-SEM, and HR-TEM. The presence of face-centered cubic (FCC) silver is confirmed by XRD studies and the average crystallite size of AgNPs is calculated to be around 6-8nm. The average particle diameter is found to be around 10nm, which is identified from HR-TEM images. The purity of AgNPs is confirmed by EDX analysis. The presence of sigmoid curve in UV-Visible absorption spectra suggests that the reaction has complicated kinetic features. To investigate the functional groups of the extract and their involvement in the reduction of AgNO3 to form AgNPs, FT-IR studies are carried out. The redox peaks are observed in cyclic voltammetry in the potential range of -1.2 to +1.2V, due to the redox active components of the T. indica fruit extract. In photoluminescence spectroscopy, the excited and emission peaks were obtained at 432nm and 487nm, respectively. The as-prepared AgNPs showed good results towards antibacterial activities. Hence, the present approach is a facile, cost- effective, reproducible, eco-friendly, and green method.
International Journal of Molecular Sciences | 2015
Ayman M. Atta; Hamad A. Al-Lohedan; Sami A. Al-Hussain
In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup.
Molecules | 2014
Gamal A. El-Mahdy; Ayman M. Atta; Hamad A. Al-Lohedan
Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.
Molecules | 2014
Ayman M. Atta; Hamad A. Al-Lohedan; Sami A. Al-Hussain
Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), and X-ray diffraction (XRD) was used to examine the crystal structure of the produced magnetite nanoparticles.
International Journal of Molecular Sciences | 2014
Ayman M. Atta; Gamal A. El-Mahdy; Hamad A. Al-Lohedan; Sami A. Al-Hussain
This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.
Molecules | 2014
Ayman M. Atta; Gamal A. El-Mahdy; Hamad A. Al-Lohedan; Abdurrahman O. Ezzat
A facile method was developed to synthesize in high yield dispersed silver nanoparticles (AgNPs) with small particle sizes of less than 10 nm. Silver nitrate was reduced to silver nanoparticles by p-chloroaniline in the presence of polyoxyethylene maleate 4-nonyl-2-propylene-phenol (NMA) as a stabilizer. The produced AgNPs were used to prepare hybrid polymer based on N-isopropylacrylamide (NIPAm), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N-methylenebisacrylamide (MBA) and potassium persulfate (KPS) using a semi-batch solution polymerization method. The prepared AgNPs and hybrid polymer were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM). The corrosion inhibition activity of the AgNPs and hybrid polymer towards steel corrosion in the presence of hydrochloric acid has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that the AgNPs and hybrid polymer acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.
Journal of Colloid and Interface Science | 2011
Abdullah S. Al-Ayed; Mohd. Sajid Ali; Hamad A. Al-Lohedan; Adel M. Al-Sulaim; Zuheir A. Issa
The alkaline hydrolysis of carsalam (2H-1,3-benzoxazine-2,4(3H)-dione), denoted as I, and its N-substituted derivatives i.e., N-methyl-1,3-benzoxazine-2,4-dione (II) and N-benzoyl-1,3-benzoxazine-2,4-dione (III) was studied spectrophotometrically at physiological temperature. The rate of hydrolysis was found to be independent on the substrate concentration. In case of I, the reaction was fractional order with respect to [OH(-)] while for II and III, reaction obeyed the first order kinetics. Effect of cationic surfactants with varying hydrophobic chains (cetyltrimethylammonium bromide, CTAB, tetradecyltrimethylammonium bromide, TTAB and dodecyltrimethylammonium bromide, DTAB) and with different head-group (cetyl pyridinium chloride, CPC) and anionic surfactant (sodium dodecyl sulfate, SDS) was also seen on the rate of alkaline hydrolysis of the carsalam and its derivatives. Cationic surfactants first catalyzed the rate of hydrolysis at lower concentrations followed by the inhibition at higher concentrations. The length of the alkyl chain had remarkable effect on the catalytic efficiency of the surfactants. Similarly N-substitution on substrate also increased the catalysis by micelles. The anionic surfactant SDS inhibited the rate of hydrolysis at all of the concentrations studied. The catalysis by cationic micelles followed by inhibition was treated in terms of the pseudophase ion-exchange model, while for the inhibition by SDS micelles the Menger-Portnoy model was used to fit the data. The effect of salts (NaCl, NaBr and (CH(3))(4)NBr) was also seen on the hydrolysis of II and it was found that all salts inhibited the rate of reaction. The inhibition follows the trend NaCl