Hamid R. Eghbalnia
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamid R. Eghbalnia.
PLOS Computational Biology | 2009
Arash Bahrami; Amir H. Assadi; John L. Markley; Hamid R. Eghbalnia
The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination.
Current Opinion in Biotechnology | 2017
John L. Markley; Rafael Brüschweiler; Arthur S. Edison; Hamid R. Eghbalnia; Robert Powers; Daniel Raftery; David S. Wishart
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
pacific symposium on biocomputing | 2006
John L. Markley; Mark E. Anderson; Qiu Cui; Hamid R. Eghbalnia; Ian A. Lewis; Adrian D. Hegeman; Jing Li; Christopher F. Schulte; Michael R. Sussman; William M. Westler; Eldon L. Ulrich; Zsolt Zolnai
We recently developed two databases and a laboratory information system as resources for the metabolomics community. These tools are freely available and are intended to ease data analysis in both MS and NMR based metabolomics studies. The first database is a metabolomics extension to the BioMagResBank (BMRB, http://www.bmrb.wisc.edu), which currently contains experimental spectral data on over 270 pure compounds. Each small molecule entry consists of five or six one- and two-dimensional NMR data sets, along with information about the source of the compound, solution conditions, data collection protocol and the NMR pulse sequences. Users have free access to peak lists, spectra, and original time-domain data. The BMRB database can be queried by name, monoisotopic mass and chemical shift. We are currently developing a deposition tool that will enable people in the community to add their own data to this resource. Our second database, the Madison Metabolomics Consortium Database (MMCD, available from http://mmcd.nmrfam.wisc.edu/), is a hub for information on over 10,000 metabolites. These data were collected from a variety of sites with an emphasis on metabolites found in Arabidopsis. The MMC database supports extensive search functions and allows users to make bulk queries using experimental MS and/or NMR data. In addition to these databases, we have developed a new module for the Sesame laboratory information management system (http://www.sesame.wisc.edu) that captures all of the experimental protocols, background information, and experimental data associated with metabolomics samples. Sesame was designed to help coordinate research efforts in laboratories with high sample throughput and multiple investigators and to track all of the actions that have taken place in a particular study.
Bioinformatics | 2009
Woonghee Lee; William M. Westler; Arash Bahrami; Hamid R. Eghbalnia; John L. Markley
Summary: PINE-SPARKY supports the rapid, user-friendly and efficient visualization of probabilistic assignments of NMR chemical shifts to specific atoms in the covalent structure of a protein in the context of experimental NMR spectra. PINE-SPARKY is based on the very popular SPARKY package for visualizing multidimensional NMR spectra (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco). PINE-SPARKY consists of a converter (PINE2SPARKY), which takes the output from an automated PINE-NMR analysis and transforms it into SPARKY input, plus a number of SPARKY extensions. Assignments and their probabilities obtained in the PINE-NMR step are visualized as labels in SPARKYs spectrum view. Three SPARKY extensions (PINE Assigner, PINE Graph Assigner, and Assign the Best by PINE) serve to manipulate the labels that signify the assignments and their probabilities. PINE Assigner lists all possible assignments for a peak selected in the dialog box and enables the user to choose among these. A window in PINE Graph Assigner shows all atoms in a selected residue along with all atoms in its adjacent residues; in addition, it displays a ranked list of PINE-derived connectivity assignments to any selected atom. Assign the Best-by-PINE allows the user to choose a probability threshold and to automatically accept as “fixed” all assignments above that threshold; following this operation, only the less certain assignments need to be examined visually. Once assignments are fixed, the output files generated by PINE-SPARKY can be used as input to PINE-NMR for further refinements. Availability: The program, in the form of source code and binary code along with tutorials and reference manuals, is available at http://pine.nmrfam.wisc.edu/PINE-SPARKY. Contact: [email protected]; [email protected]
Progress in Nuclear Magnetic Resonance Spectroscopy | 2012
Jakob T. Nielsen; Hamid R. Eghbalnia; Niels Chr. Nielsen
The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.
PLOS ONE | 2012
Arash Bahrami; Marco Tonelli; Sarata C. Sahu; Kiran Kumar Singarapu; Hamid R. Eghbalnia; John L. Markley
ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [13C,15N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.
Rapid Communications in Mass Spectrometry | 2009
Daniel E. Butz; Mark E. Cook; Hamid R. Eghbalnia; Fariba M. Assadi-Porter; Warren P. Porter
The natural abundance of carbon-13 in blood proteins increases during the cachectic state and may be a biomarker for disease status. We hypothesized a corresponding drop in the relative abundance of 13C in breath CO2. Using the lipopolysacchride (LPS)-induced endotoxemia model of the acute cachectic state, we demonstrated that the acute phase response causes shifts in the stable isotopes of carbon in exhaled CO2 (13CO2/12CO2 delta value) shortly after administration of LPS while glucocorticoid treatment does not. Mice were injected with LPS and stable isotopes of blood amino acids and carbon in exhaled CO2 were monitored. An increase in the relative isotopic mass of serum alanine, proline and threonine was observed at 3 h after LPS injection. Breath delta values began dropping immediately after administration of LPS, and were 4-5 delta values lower than those of the control animals by 2.5 h after injection. A corresponding drop in delta value was not observed with dexamethasone treatment. Thus protein synthesis during the acute phase response probably caused the fractionation of stable isotopes observed in the plasma amino acids and in exhaled breath 13CO2 delta values. The exhaled breath 13CO2 delta value may be a valuable real-time biomarker of cachexia associated with an acute phase response due to endotoxemia.
Journal of Biomolecular NMR | 2016
Woonghee Lee; Gabriel Cornilescu; Hesam Dashti; Hamid R. Eghbalnia; Marco Tonelli; William M. Westler; Samuel E. Butcher; Katherine A. Henzler-Wildman; John L. Markley
NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page (http://pine.nmrfam.wisc.edu/download_packages.html), and detailed instructions are available from the Integrative NMR Video Tutorial page (http://pine.nmrfam.wisc.edu/integrative.html).
Biophysical Journal | 2017
Mark W. Maciejewski; Adam D. Schuyler; Michael R. Gryk; Ion I. Moraru; Pedro Romero; Eldon L. Ulrich; Hamid R. Eghbalnia; Miron Livny; Frank Delaglio; Jeffrey C. Hoch
Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users.
Journal of Biomolecular NMR | 2012
Arash Bahrami; Lawrence J. Clos; John L. Markley; Samuel E. Butcher; Hamid R. Eghbalnia
The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation (1H–15N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy (1H–1H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority of the NMR resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.