Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Chang Kang is active.

Publication


Featured researches published by Han Chang Kang.


Biomaterials | 2011

A Reducible Polycationic Gene Vector Derived from Thiolated Low Molecular Weight Branched Polyethyleneimine Linked by 2-Iminothiolane

Han Chang Kang; Ho Jung Kang; You Han Bae

To improve transfection efficiency and reduce the cytotoxicity of polymeric gene vectors, reducible polycations (RPC) were synthesized from low molecular weight (MW) branched polyethyleneimine (bPEI) via thiolation and oxidation. RPC (RPC-bPEI(0.8 kDa)) possessed MW of 5 kDa-80 kDa, and 50%-70% of the original proton buffering capacity of bPEI(0.8 kDa) was preserved in the final product. The cytotoxicity of RPC-bPEI(0.8 kDa) was 8-19 times less than that of the gold standard of polymeric transfection reagents, bPEI(25 kDa). Although bPEI(0.8 kDa) exhibited poor gene condensing capacities (∼2 μm at a weight ratio (WR) of 40), RPC-bPEI(0.8 kDa) effectively condensed plasmid DNA (pDNA) at a WR of 2. Moreover, RPC-bPEI(0.8 kDa)/pDNA (WR ≥2) formed 100-200 nm-sized particles with positively charged surfaces (20-35 mV). In addition, the results of the present study indicated that thiol/polyanions triggered the release of pDNA from RPC-bPEI(0.8 kDa)/pDNA via the fragmentation of RPC-bPEI(0.8 kDa) and ion-exchange. With negligible polyplex-mediated cytotoxicity, the transfection efficiencies of RPC-bPEI(0.8 kDa)/pDNA were approximately 1200-1500-fold greater than that of bPEI(0.8 kDa)/pDNA and were equivalent or superior (∼7-fold) to that of bPEI(25 kDa)/pDNA. Interestingly, the distribution of high MW RPC-bPEI(0.8 kDa)/pDNA in the nucleus of the cell was higher than that of low MW RPC-bPEI(0.8 kDa)/pDNA. Thus, the results of the present study suggest that RPC-bPEI(0.8 kDa) has the potential to effectively deliver genetic materials with lower levels of toxicity.


Macromolecular Research | 2012

pH-sensitive polymers for drug delivery

Kang Moo Huh; Han Chang Kang; Young Ju Lee; You Han Bae

AbstractVarious pH-sensitive polymers have been developed for biomedical applications and recently attracted much attention for pH targeting nanomedicine. Recent development of pH-sensitive polymer systems that sharply respond to specific pH environment in solid tumors and cells and demonstrate modulated properties (e.g., triggered drug release at extratumoral pH, ligands or cell penetrating peptides exposure by shielding/deshielding mechanism or by pop-up mechanism, and endosomal pH targeting) have led significant progress in tumor targeting technology. These pH-sensitive polymer systems combined with nanotechnology could be utilized as an alternative strategy to traditional targeting systems to overcome major problems in current chemotherapy represented by non-specific tissue distribution of the drugs, tumor heterogeneity, and multidrug resistance (MDR) against anticancer drugs. This review highlights recent progress of pH-sensitive polymers with special emphasis on pH targeting nanomedicine.


Biomaterials | 2011

Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide.

Han Chang Kang; You Han Bae

Cationic polymers are potential intracellular carriers for small interfering RNA (siRNA). The short and rigid nature of an siRNA chain often results in larger and more loosely packed particles compared to plasmid DNA (pDNA) after complexing with carrier polycations, and in turn, poor silencing effects are seen against the target mRNAs. A helper polyanion, pDNA, was incorporated along with siRNA to form compact nanosized polyplexes. At C/A (cation/anion) ratios of 2 and 5, poly(l-lysine) (PLL)/siRNA-pGFP and PLL/siRNA-pGFP-OSDZ (oligomeric sulfadiazine (OSDZ) for endosomolysis) complexes produced particles 90-150 nm in size with a 15-45 mV surface charge, while PLL/siRNA complexes yielded particles 1-2 μm in size at the same C/A ratios. The PLL/siRNA-pGFP (C/A 2) complexes showed significantly higher specific gene silencing (50-90% vs. 10-25%) than the complexes formed at C/A 5. PLL/siRNA-pGFP-OSDZ (C/A 2) complexes improved the specific gene silencing (90%) more dramatically than PLL/siRNA-pGFP (C/A 2) complexes (50%), demonstrating a potential role for OSDZ. PLL/siRNA-pGFP-OSDZ (C/A 2) complexes sustained higher specific gene silencing compared with PLL/siRNA-pGFP (C/A 2) complexes. Other oligomeric sulfonamides (OSA) with varying pK(a) used in PLL/siRNA-pGFP-OSA complexes also caused effective gene silencing. The pGFP in the PLL/siRNA-pGFP complexes successfully expressed GFP protein without interfering with the siRNA. In conclusion, this study demonstrates that long pDNA helps effectively form nanosized siRNA particles and that OSA enhances specific gene silencing. In a single nucleic acid carrier formulation, co-delivery of siRNA and pDNA is feasible to maximize therapeutic effects or to include therapeutic or diagnostic functionalities.


Biomaterials | 2012

Multi-arm histidine copolymer for controlled release of insulin from poly(lactide-co-glycolide) microsphere

Wooram Park; Dongin Kim; Han Chang Kang; You Han Bae; Kun Na

For long-term, sustained protein delivery, a new, star-shaped block copolymer composed of methoxy poly(ethylene glycol) (mPEG), branched oligoethylenimine (bOEI), and poly(l-histidine) (pHis) was synthesized via the multi-initiation and ring-opening polymerization (ROP) of His N-carboxy anhydride (NCA) on bOEI with a PEG conjugation. The resulting mPEG-bOEI-pHis (POH) had strong buffering capacity within the neutral-to-acidic pH range and was complexed with insulin (Ins) via an electrostatic attraction plus hydrophobic interactions, resulting in the formation of a dual-interaction complex (DIC, weight ratio 2) of approximately 30-60 nm in size. This DIC tolerated high salt concentrations without destabilization, supporting the existence of hydrophobic interactions, and protected Ins from the organic solvent/water interface. The DIC in poly(lactide-co-glycolide) microspheres (PLGA MS) as a long-term Ins delivery formulation was evenly distributed via a double-emulsion method. The DIC-loaded PLGA MS offered a higher Ins loading and a lower initial burst than Ins-loaded PLGA MS. This formulation possessed near zero-order release kinetics (for at least one month). In streptozotocin (STZ)-induced diabetic rats, a DIC-loaded PLGA MS formulation was able to maintain blood-glucose levels at 200-350 mg/dL for the first two weeks and even lower levels (100-200 mg/dL) for the next two weeks. Thus, a new POH polymer and its complex with a drug protein could have potential biological application as a long-term, sustained protein delivery system.


Biomacromolecules | 2014

Biarmed Poly(ethylene glycol)-(pheophorbide a)2 Conjugate as a Bioactivatable Delivery Carrier for Photodynamic Therapy

Wool Lim Kim; Hana Cho; Li Li; Han Chang Kang; Kang Moo Huh

In the study presented here, we developed a bioreducible biarmed methoxy poly(ethylene glycol)-(pheophorbide a)2 (mPEG-(ss-PhA)2) conjugate for cancer-cell-specific photodynamic therapy (PDT). PhA molecules were chemically conjugated with biarmed linkages at one end of the mPEG molecule via disulfide bonds. Under aqueous conditions, the amphiphilic mPEG-(ss-PhA)2 conjugate self-assembled to form core-shell-structured nanoparticles (NPs) with good colloidal stability. The mPEG-(ss-PhA)2 NPs exhibited intramolecular and intermolecular self-quenching effects that enabled the NPs to remain photoinactive in a physiological buffer. However, the dissociation of the NP structure was effectively induced by the cleavage of the disulfide bonds in response to intracellular reductive conditions, triggering the rapid release of PhA molecules in a photoactive form. In cell-culture systems, in addition to significant phototoxicity and intracellular uptake, we observed that the dequenching processes of PhA in the mPEG-(ss-PhA)2 NPs highly depended on the expression of intracellular thiols and that supplementation with glutathione monoethylester facilitated more rapid PhA release and enhanced the PhA phototoxicity. These findings suggest that the bioreducible activation mechanism of mPEG-(ss-PhA)2 NPs in cancer cells can maximize the cytosolic dose of active photosensitizers to achieve high cytotoxicity, thereby enhancing the treatment efficacy of photodynamic cancer treatment.


Journal of Controlled Release | 2012

Polymeric nucleic acid carriers: current issues and novel design approaches.

Han Chang Kang; Kang Moo Huh; You Han Bae

To deliver nucleic acids including plasmid DNA (pDNA) and short interfering RNA (siRNA), polymeric gene carriers equipped with various functionalities have been extensively investigated. The functionalities of these polymeric vectors have been designed to overcome various extracellular and intracellular hurdles that nucleic acids and their carriers encounter during their journey from injection site to intracellular target site. This review briefly introduces known extracellular and intracellular issues of nucleic acid delivery and their solution strategies. We examine significant yet overlooked factors affecting nucleic acid delivery (e.g., microenvironmental pH, polymer/siRNA complexation, and pharmaceutical formulation) and highlight our reported approaches to solve these problems.


Biomaterials | 2010

Trafficking microenvironmental pHs of polycationic gene vectors in drug-sensitive and multidrug-resistant MCF7 breast cancer cells.

Han Chang Kang; Olga Samsonova; You Han Bae

While multidrug resistance (MDR) has been a significant issue in cancer chemotherapy, delivery resistance to various anti-cancer biotherapeutics, including genes, has not been widely recognized as a property of MDR. This study aims to provide a better understanding of the transfection characteristics of drug-sensitive and drug-resistant cells by tracing microenvironmental pHs of two representative polymer vectors: poly(L-lysine) and polyethyleneimine. Drug-sensitive breast MCF7 cells had four- to seven-times higher polymeric transfection efficiencies than their counterpart drug-resistant MCF7/ADR-RES cells. Polyplexes in MCF7/ADR-RES cells after endocytosis were exposed to a more acidic microenvironment than those in MCF7 cells; the MDR cells show faster acidification rates in endosomes/lysosomes than the drug-sensitive cells after endocytosis (in the case of PLL/pDNA complexes, approximately pH 5.1 for MCF7/ADR-RES cells vs. approximately pH 6.8 for MCF7 cells at 0.5 h post-transfection). More polyplexes were identified trapped in acidic subcellular compartments of MCF7/ADR-RES cells than in MCF7 cells, suggesting that they lack endosomal escaping activity. These findings demonstrate that the design of polymer-based gene delivery therapeutics should take into account the pH of subcellular compartments.


PLOS ONE | 2014

The Sensitivity of Cancer Cells to Pheophorbide a-Based Photodynamic Therapy Is Enhanced by NRF2 Silencing

Bo-hyun Choi; In-geun Ryoo; Han Chang Kang; Mi-Kyoung Kwak

Photodynamic therapy (PDT) has emerged as an effective treatment for various solid tumors. The transcription factor NRF2 is known to protect against oxidative and electrophilic stress; however, its constitutive activity in cancer confers resistance to anti-cancer drugs. In the present study, we investigated NRF2 signaling as a potential molecular determinant of pheophorbide a (Pba)-based PDT by using NRF2-knockdown breast carcinoma MDA-MB-231 cells. Cells with stable NRF2 knockdown showed enhanced cytotoxicity and apoptotic/necrotic cell death following PDT along with increased levels of singlet oxygen and reactive oxygen species (ROS). A confocal microscopic visualization of fluorogenic Pba demonstrated that NRF2-knockdown cells accumulate more Pba than control cells. A subsequent analysis of the expression of membrane drug transporters showed that the basal expression of BCRP is NRF2-dependent. Among measured drug transporters, the basal expression of breast cancer resistance protein (BCRP; ABCG2) was only diminished by NRF2-knockdown. Furthermore, after incubation with the BCRP specific inhibitor, differential cellular Pba accumulation and ROS in two cell lines were abolished. In addition, NRF2-knockdown cells express low level of peroxiredoxin 3 compared to the control, which implies that diminished mitochondrial ROS defense system can be contributing to PDT sensitization. The role of the NRF2-BCRP pathway in Pba-PDT response was further confirmed in colon carcinoma HT29 cells. Specifically, NRF2 knockdown resulted in enhanced cell death and increased singlet oxygen and ROS levels following PDT through the diminished expression of BCRP. Similarly, PDT-induced ROS generation was substantially increased by treatment with NRF2 shRNA in breast carcinoma MCF-7 cells, colon carcinoma HCT116 cells, renal carcinoma A498 cells, and glioblastoma A172 cells. Taken together, these results indicate that the manipulation of NRF2 can enhance Pba-PDT sensitivity in multiple cancer cells.


Biomaterials | 2009

All-trans-retinoic acid (ATRA)-grafted polymeric gene carriers for nuclear translocation and cell growth control

Kyong Mi Park; Han Chang Kang; Jung Kyo Cho; Ik Joo Chung; Sang Hee Cho; You Han Bae; Kun Na

Polyethyleneimine (PEI)-g-All-trans-retinoic acid (ATRA) (designated as PRA) was synthesized as a gene carrier. ATRA at its low concentration is known to be linked to nuclear translocation and cell cycle control (either proliferation or growth arrest) depending on its binding protein in cells. The cytotoxicity of PRA conjugates was lower than that of PEI and was gradually reduced as increasing ATRA graft ratios. The resulting nanosized and positively charged PRA/pDNA complexes showed lower transfection efficiency than the PEI/pDNA complexes (N/P=10) against NIH3T3 which is less sensitive to ATRA in cell growth and more sensitive HeLa cells. However, when a mixed gene complex of PEI and PRA was applied in an effort to reduce the ATRA contents, their NIH3T3 transfection evidenced effective nuclear translocation and induced 2- to 4-fold better transfection efficiency as compared with the PEI/pDNA complexes. When the PEI/pDNA complexes were utilized to transfect HeLa cells, free ATRA treatment reduced their cellular uptake and transfection efficiency. These findings show that the NIH3T3 cells against ATRA-mediated growth arrest would not damage the PRA-mediated transfection enhancement resulting from the facilitated nuclear translocation of polyplexes or pDNA. The more ATRA-sensitivity in growth arrest of HeLa cells would reduce the transfection efficiency of ATRA-incorporated polyplexes. The transfection capability of gene by newly synthesized PRA conjugates to cells is differentiated by their ATRA-sensitivity to nuclear translocation and cell growth control.


Biomacromolecules | 2013

Bioreducible polymers as a determining factor for polyplex decomplexation rate and transfection

Hee Sook Hwang; Han Chang Kang; You Han Bae

Polyplex formation (complexation) and gene release from the polyplexes (decomplexation) are major events in polymeric gene delivery; however, the effect of the decomplexation rate on transfection has been rarely investigated. This study employed mixed polymers of poly((L)-lysine) (PLL: MW ~7.4 kDa) and reducible PLL (RPLL) (MW ~6.7 kDa) to design decomplexation rate-controllable PLL(100-x)RPLL(x)/pDNA complexes (PRL(x) polyplexes). The transfection efficiency of a model gene (luciferase) in MCF7 and HEK293 cell lines increased with increasing x (RPLL content) in the PRL(x) polyplexes until peaking at x = 2.5 and 10, respectively, after which point transfection efficiency declined rapidly. In MCF7 cells, PRL(2.5) polyplex produced 3 or 223 times higher gene expression than PLL or RPLL polyplexes, respectively. Similarly, the transfection efficiency of PRL(10) polyplex-transfected HEK293 cells was 3.8 or 67 times higher than that of PLL or RPLL polyplexes, respectively. The transfection results were not apparently related to the particle size, surface charge, complexation/compactness, cellular uptake, or cytotoxicity of the tested polyplexes. However, the decomplexation rate varied by RPLL content in the polyplexes, which in turn influenced the gene transfection. The nuclear localization of pDNA delivered by PRL(x) polyplexes showed a similar trend to their transfection efficiencies. This study suggests that an optimum decomplexation rate may result in high nuclear localization of pDNA and transfection. Understanding in decomplexation and intracellular localization of pDNA may help develop more effective polyplexes.

Collaboration


Dive into the Han Chang Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang Moo Huh

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hana Cho

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Hye Suk Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joo Young Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeon Su Choi

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Li Li

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Eunji Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge