Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Ching Wang is active.

Publication


Featured researches published by Han Ching Wang.


Journal of Virology | 2004

Genomic and Proteomic Analysis of Thirty-Nine Structural Proteins of Shrimp White Spot Syndrome Virus

Jyh-Ming Tsai; Han Ching Wang; Jiann Horng Leu; He-Hsuan Hsiao; Andrew H.-J. Wang; Guang-Hsiung Kou; Chu Fang Lo

ABSTRACT White spot syndrome virus (WSSV) virions were purified from the hemolymph of experimentally infected crayfish Procambarus clarkii, and their proteins were separated by 8 to 18% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to give a protein profile. The visible bands were then excised from the gel, and following trypsin digestion of the reduced and alkylated WSSV proteins in the bands, the peptide sequence of each fragment was determined by liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS/MS) using a quadrupole/time-of-flight mass spectrometer. Comparison of the resulting peptide sequence data against the nonredundant database at the National Center for Biotechnology Information identified 33 WSSV structural genes, 20 of which are reported here for the first time. Since there were six other known WSSV structural proteins that could not be identified from the SDS-PAGE bands, there must therefore be a total of at least 39 (33 + 6) WSSV structural protein genes. Only 61.5% of the WSSV structural genes have a polyadenylation signal, and preliminary analysis by 3′ rapid amplification of cDNA ends suggested that some structural protein genes produced mRNA without a poly(A) tail. Microarray analysis showed that gene expression started at 2, 6, 8, 12, 18, 24, and 36 hpi for 7, 1, 4, 12, 9, 5, and 1 of the genes, respectively. Based on similarities in their time course expression patterns, a clustering algorithm was used to group the WSSV structural genes into four clusters. Genes that putatively had common or similar roles in the viral infection cycle tended to appear in the same cluster.


Journal of Virology | 2006

Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion.

Jyh Ming Tsai; Han Ching Wang; Jiann Horng Leu; Andrew H.-J. Wang; Ying Zhuang; Peter J. Walker; Guang Hsiung Kou; Chu Fang Lo

ABSTRACT The protein components of the white spot syndrome virus (WSSV) virion have been well established by proteomic methods, and at least 39 structural proteins are currently known. However, several details of the virus structure and assembly remain controversial, including the role of one of the major structural proteins, VP26. In this study, Triton X-100 was used in combination with various concentrations of NaCl to separate intact WSSV virions into distinct fractions such that each fraction contained envelope and tegument proteins, tegument and nucleocapsid proteins, or nucleocapsid proteins only. From the protein profiles and Western blotting results, VP26, VP36A, VP39A, and VP95 were all identified as tegument proteins distinct from the envelope proteins (VP19, VP28, VP31, VP36B, VP38A, VP51B, VP53A) and nucleocapsid proteins (VP664, VP51C, VP60B, VP15). We also found that VP15 dissociated from the nucleocapsid at high salt concentrations, even though DNA was still present. These results were confirmed by CsCl isopycnic centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry, by a trypsin sensitivity assay, and by an immunogold assay. Finally, we propose an assembly process for the WSSV virion.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin.

Chung-Te Lee; I-Tung Chen; Yi-Ting Yang; Tzu-Ping Ko; Yun-Tzu Huang; Jiun-Yan Huang; Ming-Fen Huang; Shin-Jen Lin; Chien-Yu Chen; Shih-Shuen Lin; Donald V. Lightner; Han Ching Wang; Andrew H.-J. Wang; Hao-Ching Wang; Lien-I Hor; Chu Fang Lo

Significance Since 2009, an emergent shrimp disease, acute hepatopancreatic necrosis disease (AHPND), has been causing global losses to the shrimp farming industry. The causative agent of AHPND is a specific strain of Vibrio parahaemolyticus. We present evidence here that the opportunistic V. parahaemolyticus becomes highly virulent by acquiring a unique AHPND-associated plasmid. This virulence plasmid, which encodes a binary toxin [V. parahaemolyticus Photorhabdus insect-related toxins (PirAvp and PirBvp)] that induces cell death, is stably inherited via a postsegregational killing system and disseminated by conjugative transfer. The cytotoxicity of the PirAvp/PirBvp system is analogous to the structurally similar insecticidal pore-forming Cry toxin. These findings will significantly increase our understanding of this emerging disease, which is essential for developing anti-AHPND measures. Acute hepatopancreatic necrosis disease (AHPND) is a severe, newly emergent penaeid shrimp disease caused by Vibrio parahaemolyticus that has already led to tremendous losses in the cultured shrimp industry. Until now, its disease-causing mechanism has remained unclear. Here we show that an AHPND-causing strain of V. parahaemolyticus contains a 70-kbp plasmid (pVA1) with a postsegregational killing system, and that the ability to cause disease is abolished by the natural absence or experimental deletion of the plasmid-encoded homologs of the Photorhabdus insect-related (Pir) toxins PirA and PirB. We determined the crystal structure of the V. parahaemolyticus PirA and PirB (PirAvp and PirBvp) proteins and found that the overall structural topology of PirAvp/PirBvp is very similar to that of the Bacillus Cry insecticidal toxin-like proteins, despite the low sequence identity (<10%). This structural similarity suggests that the putative PirABvp heterodimer might emulate the functional domains of the Cry protein, and in particular its pore-forming activity. The gene organization of pVA1 further suggested that pirABvp may be lost or acquired by horizontal gene transfer via transposition or homologous recombination.


Developmental and Comparative Immunology | 2008

WSSV infection activates STAT in shrimp

Wei Yu Chen; Kun Chin Ho; Jiann Horng Leu; Kuan Fu Liu; Han Ching Wang; Guang Hsiung Kou; Chu Fang Lo

Although the JAK/STAT signaling pathway is usually involved in antiviral defense, a recent study suggested that STAT might be annexed by WSSV (white spot syndrome virus) to enhance the expression of a viral immediate early gene in infected shrimps. In the present study, we clone and report the first full-length cDNA sequence for a crustacean STAT from Penaeus monodon. Alignment and comparison with the deduced amino acid sequences of other STATs identified several important conserved residues and functional domains, including the DNA binding domain, SH2 domain and C-terminal transactivation domain. Based on these conserved sequences, a phylogenetic analysis suggested that shrimp STAT belongs to the ancient STAT family, while the presence of the functional domains suggested that shrimp STAT might share similar functions and regulating mechanisms with the well-known STATs isolated from model organisms. Real-time PCR showed a decreased transcription level of shrimp STAT after WSSV infection, but a Western blot analysis using anti-phosphorylated STAT antibody showed an increased level of phosphorylated (activated) STAT in the lymphoid organ of shrimp after WSSV infection. We further show that a primary culture of lymphoid organ cells from WSSV-infected shrimp resulted in activated STAT being translocated from the cytoplasm to the nucleus. This report provides experimental evidence that shrimp STAT is activated in response to WSSV infection. Our results support an earlier finding that WSSV does not disrupt JAK/STAT pathway, but on the contrary benefits from STAT activation in the shrimp host.


Journal of Virology | 2005

The Unique Stacked Rings in the Nucleocapsid of the White Spot Syndrome Virus Virion Are Formed by the Major Structural Protein VP664, the Largest Viral Structural Protein Ever Found

Jiann Horng Leu; Jyh-Ming Tsai; Han Ching Wang; Andrew H.-J. Wang; Chung-Hsiung Wang; Guang-Hsiung Kou; Chu Fang Lo

ABSTRACT One unique feature of the shrimp white spot syndrome virus (WSSV) genome is the presence of a giant open reading frame (ORF) of 18,234 nucleotides that encodes a long polypeptide of 6,077 amino acids with a hitherto unknown function. In the present study, by applying proteomic methodology to analyze the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of purified WSSV virions by liquid chromatography-mass spectrometry (LC-MS/MS), we found that this giant polypeptide, designated VP664, is one of the viral structural proteins. The existence of the corresponding 18-kb transcript was confirmed by sequencing analysis of reverse transcription-PCR products, which also showed that vp664 was intron-less. A time course analysis showed that this transcript was actively transcribed at the late stage, suggesting that this gene product should contribute primarily to the assembly and morphogenesis of the virion. Several polyclonal antisera against this giant protein were prepared, and one of them was successfully used for immunoelectron microscopy analysis to localize the protein in the virion. Immunoelectron microscopy with a gold-labeled secondary antibody showed that the gold particles were regularly distributed around the periphery of the nucleocapsid with a periodicity that matched the characteristic stacked ring subunits that appear as striations. From this and other evidence, we argue that this giant ORF in fact encodes the major WSSV nucleocapsid protein.


Genome Announcements | 2014

Draft genome sequences of four strains of Vibrio parahaemolyticus, three of which cause early mortality syndrome/acute hepatopancreatic necrosis disease in shrimp in China and Thailand

Yi-Ting Yang; I-Tung Chen; Chung-Te Lee; Chien-Yu Chen; Shih-Shun Lin; Lien-I Hor; Ta-Chien Tseng; Yun-Tzu Huang; Kallaya Sritunyalucksana; Siripong Thitamadee; Han Ching Wang; Chu Fang Lo

ABSTRACT We sequenced four Vibrio parahaemolyticus strains, three of which caused serious acute hepatopancreatic necrosis disease. Sequence analysis of the virulent strains revealed not only genes related to cholera toxin and the type IV pilus/type IV secretion system but also a unique, previously unreported, large extrachromosomal plasmid that encodes a homolog to the insecticidal Photorhabdus insect-related binary toxin PirAB.


Proceedings of the National Academy of Sciences of the United States of America | 2008

White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly.

Hao Ching Wang; Han Ching Wang; Tzu-Ping Ko; Yu‑May Lee; Jiann Horng Leu; Chun Han Ho; Wei-Pang Huang; Chu Fang Lo; Andrew H.-J. Wang

White spot syndrome virus (WSSV) is a large (≈300 kbp), double-stranded DNA eukaryotic virus that has caused serious disease in crustaceans worldwide. ICP11 is the most highly expressed WSSV nonstructural gene/protein, which strongly suggests its importance in WSSV infection; but until now, its function has remained obscure. We show here that ICP11 acts as a DNA mimic. In crystal, ICP11 formed a polymer of dimers with 2 rows of negatively charged spots that approximated the duplex arrangement of the phosphate groups in DNA. Functionally, ICP11 prevented DNA from binding to histone proteins H2A, H2B, H3, and H2A.x, and in hemocytes from WSSV-infected shrimp, ICP11 colocalized with histone H3 and activated-H2A.x. These observations together suggest that ICP11 might interfere with nucleosome assembly and prevent H2A.x from fulfilling its critical function of repairing DNA double strand breaks. Therefore, ICP11 possesses a functionality that is unique among the handful of presently known DNA mimic proteins.


PLOS Pathogens | 2014

An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway

Mei-An Su; Yun-Tzu Huang; I-Tung Chen; Der-Yen Lee; Yun-Chieh Hsieh; Chun-Yuan Li; Tze Hann Ng; Suh-Yuen Liang; Shu-Yu Lin; Shiao-Wei Huang; Yi-An Chiang; Hon-Tsen Yu; Kay-Hooi Khoo; Geen-Dong Chang; Chu Fang Lo; Han Ching Wang

In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the viruss requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.


Marine Biotechnology | 2011

Microarray Analyses of Shrimp Immune Responses

Takashi Aoki; Han Ching Wang; Sasimanas Unajak; Mudjekeewis D. Santos; Hidehiro Kondo; Ikuo Hirono

Shrimp aquaculture is one of the major food-producing industries in the world. However, it is being impacted by several problems including diseases, antibiotic use, and environmental factors. The extent of the effects of these problems in the immune system of the shrimp at the molecular level is just beginning to be understood. Here, we review the gene expression profile of shrimp in response to some of these problems using the high-throughput microarray analysis, including white spot syndrome virus, yellow head virus, Vibrio spp., peptidoglycan, oxytetracycline, oxolinic acid, salinity, and temperature.


Marine Biotechnology | 2001

Sequencing and Amplified Restriction Fragment Length Polymorphism Analysis of Ribonucleotide Reductase Large Subunit Gene of the White Spot Syndrome Virus in Blue Crab (Callinectes sapidus) from American Coastal Waters

Yun-Shiang Chang; Shao-En Peng; Han Ching Wang; Hui-Chen Hsu; Ching-Hui Ho; Chung-Hsiung Wang; Sho-Ya Wang; Chu Fang Lo; Guang-Hsiung Kou

Abstract: In the present study, the existence of white spot syndrome virus (WSSV) in blue crab (Callinectes sapidus) collected from 3 different American coastal waters (New York, New Jersey, and Texas) was confirmed by 2-step diagnostic polymerase chain reaction and in situ hybridization analysis. When geographic isolates were also compared using a gene that encodes the WSSV ribonucleotide reductase large subunit RR1 (WSSV rr1), a C1661-to-T point mutation was found in the New Jersey WSSV isolated. This point mutation, which resulted in the creation of an additional RsaI endonuclease recognition site, was not found in the WSSV from the New York and Texas blue crab samples, or in the WSSV Taiwan isolate, or in any of the other WSSV geographical isolates for which data are available. WSSV rr1-specific RsaI amplified restriction fragment length polymorphism of an amplified 1156-bp fragment thus distinguished the New Jersey blue crab samples from the other WSSV isolates.

Collaboration


Dive into the Han Ching Wang's collaboration.

Top Co-Authors

Avatar

Chu Fang Lo

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Tze Hann Ng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Takashi Aoki

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Guang-Hsiung Kou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Guang Hsiung Kou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jiann Horng Leu

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Yi An Chiang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I-Tung Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Ying Chun Yeh

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge