Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Olff is active.

Publication


Featured researches published by Han Olff.


Trends in Ecology and Evolution | 1998

Effects of herbivores on grassland plant diversity.

Han Olff; Mark E. Ritchie

The role of herbivores in controlling plant species richness is a critical issue in the conservation and management of grassland biodiversity. Numerous field experiments in grassland plant communities show that herbivores often, but not always, increase plant diversity. Recent work suggests that the mechanisms of these effects involve alteration of local colonization of species from regional species pools or local extinction of species, and recent syntheses and models suggest that herbivore effects on plant diversity should vary across environmental gradients of soil fertility and precipitation.


Nature | 1999

Spatial scaling laws yield a synthetic theory of biodiversity

Mark E. Ritchie; Han Olff

Ecologists still search for common principles that predict well-known responses of biological diversity to different factors. Such factors include the number of available niches in space, productivity, area, species body size and habitat fragmentation. Here we show that all these patterns can arise from simple constraints on how organisms acquire resources in space. We use spatial scaling laws to describe how species of different sizes find food in patches of varying size and resource concentration. We then derive a mathematical rule for the minimum similarity in size of species that share these resources. This packing rule yields a theory of species diversity that predicts relations between diversity and productivity more effectively thanprevious models. Size and diversity patterns for locally coexisting East African grazing mammals and North American savanna plants strongly support these predictions. The theory also predicts relations between diversity and area and between diversity and habitat fragmentation. Thus, spatial scaling laws provide potentially unifying first principles that may explain many important patterns of species diversity.


Nature | 2002

Global environmental controls of diversity in large herbivores

Han Olff; Mark E. Ritchie; Herbert H. T. Prins

Large mammalian herbivores occupy half of the earths land surface and are important both ecologically and economically, but their diversity is threatened by human activities. We investigated how the diversity of large herbivores changes across gradients of global precipitation and soil fertility. Here we show that more plant-available moisture reduces the nutrient content of plants but increases productivity, whereas more plant-available nutrients increase both of these factors. Because larger herbivore species tolerate lower plant nutrient content but require greater plant abundance, the highest potential herbivore diversity should occur in locations with intermediate moisture and high nutrients. These areas are dry enough to yield high quality plants and support smaller herbivores, but productive enough to support larger herbivores. These predictions fit with observed patterns of body size and diversity for large mammalian herbivores in North America, Africa and Australia, and yield a global map of regions with potentially high herbivore diversity. Thus, gradients of precipitation, temperature and soil fertility might explain the global distribution of large herbivore diversity and help to identify crucial areas for conservation and restoration.


Nature | 2002

Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

John P. Haskell; Mark E. Ritchie; Han Olff

Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and population density and strongly depends on organism size. Here we present a new model of home range–body size scaling based on fractal resource distributions, in which resource encounter rates are a function of body size. The model predicts no universally constant scaling exponent for home range, but defines a possible range of values set by geometric limits to resource density and distribution. The model unifies apparently conflicting earlier results and explains differences in scaling exponents among herbivorous and carnivorous mammals and birds. We apply the model to predict that home range increases with habitat fragmentation, and that the home ranges of larger species should be much more sensitive to habitat fragmentation than those of smaller species.


Plant Ecology | 2000

Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa

Max Rietkerk; Pieter Ketner; Joep M.S. Burger; Bart Hoorens; Han Olff

We studied the degree and scale of patchiness of vegetation and selected soil variables along a gradient of herbivore impact. The gradient consisted of a radial pattern of `high, `intermediate and `low herbivore impact around a watering point in a semi-arid environment in Burkina Faso (West Africa). We hypothesised that, at a certain range of herbivore impact, vegetated patches alternating with patches of bare soil would occur as a consequence of plant-soil feedbacks and run-off-run-on patterns. Indeed, our transect data collected along the gradient showed that vegetated patches with a scale of about 5–10xa0m, alternating with bare soil, occurred at intermediate herbivore impact. When analysing the data from the experimental sites along the gradient, however, we also found a high degree of patchiness of vegetation and soil variables in case of low and high herbivore impact. For low herbivore impact, most variation was spatially explained, up to 100% for vegetation biomass and soil temperature, with a patch scale of about 0.50xa0m. This was due to the presence of perennial grass tufts of Cymbopogon schoenanthus. Patterns of soil organic matter and NH4-N were highly correlated with these patterns of biomass and soil temperature, up to r=0.7 (P<0.05) for the in situ correlation between biomass and NH4-N. For high herbivore impact, we also found that most variation was spatially explained, up to 100% for biomass and soil temperature, and 84% for soil moisture, with three distinct scales of patchiness (about 0.50xa0m, 1.80xa0m and 2.80xa0m). Here, microrelief had a corresponding patchy structure. For intermediate herbivore impact, again most variation was spatially explained, up to 100% for biomass and soil temperature, and 84% for soil moisture, with a patch scale of about 0.95xa0m. Here, we found evidence that vegetated patches positively affected soil moisture through less run-off and higher infiltration of rainwater that could not infiltrate into the bare soil elsewhere, which was not due to microrelief. Thus, we conclude that our findings are in line with our initial hypothesis that, at intermediate herbivore impact, vegetated patches alternating with patches of bare soil persist in time due to positive plant-soil feedbacks.


Ecology | 2008

Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo

Anna E. Jolles; Vanessa O. Ezenwa; Rampal S. Etienne; Wendy C. Turner; Han Olff

Epidemiological studies typically focus on single-parasite systems, although most hosts harbor multiple parasite species; thus, the potential impacts of co-infection on disease dynamics are only beginning to be recognized. Interactions between macroparasites, such as gastrointestinal nematodes, and microparasites causing diseases like TB, AIDS, and malaria are particularly interesting because co-infection may favor transmission and progression of these important diseases. Here we present evidence for strong interactions between gastrointestinal worms and bovine tuberculosis (TB) in free-ranging African buffalo (Syncerus caffer). TB and worms are negatively associated at the population, among-herd, and within-herd scales, and this association is not solely the result of demographic heterogeneities in infection. Combining data from 1362 buffalo with simple mechanistic models, we find that both accelerated mortality of co-infected individuals and TB transmission heterogeneity caused by trade-offs in immunity to the two types of parasites likely contribute to observed infection patterns. This study is one of the first to examine the relevance of within-host immunological trade-offs for understanding parasite distribution patterns in natural populations.


Philosophical Transactions of the Royal Society B | 2009

Parallel ecological networks in ecosystems

Han Olff; David Alonso; Matty P. Berg; B. Klemens Eriksson; Michel Loreau; Theunis Piersma; Neil Rooney

In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah.


Oecologia | 2004

Impact of herbivores on nitrogen cycling: contrasting effects of small and large species

Elisabeth S. Bakker; Han Olff; M Boekhoff; J. M. Gleichman; Frank Berendse

Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazing.


Journal of Vegetation Science | 2003

Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands

Elisabeth S. Bakker; Han Olff

Abstract Potential effects of herbivores on plant species diversity depend on herbivore size, species and density. In this study we examine the effect of different-sized herbivores (cattle and rabbits) on recruitment of subordinate herbs in grasslands. We show that in a grazed floodplain, grassland plant species richness is mainly determined by the presence of many species of subordinate herbs. These herbs experience high colonization and extinction rates. We conclude that the creation of colonization opportunities for subordinate herbs plays a crucial role in maintaining plant species richness in productive grasslands. We found that cattle disperse large amounts of seeds via their dung, over ten times more than rabbits. Rabbits create more and on average larger bare soil patches than cattle. In a field experiment artificial disturbances improved germination success tremendously for four tested herb species. We found that bare soil is the best regeneration site, while cattle dung gave a too strong nutrient stimulus, resulting in tall vegetation and therefore light limitation. These results can be confirmed with results from field monitoring plots where plant species richness was positively related to the occurrence of bare soil patches. Therefore both large and small herbivores have a major impact on dispersal and colonization, but for different reasons. Cattle are identified as most important for seed dispersal whereas rabbits have a main effect as creators of disturbances. These results emphasize the importance of distinguishing between herbivore species in assessing their (potential) effects. Nomenclature: van der Meijden (1990).


Landscape and Urban Planning | 2002

Fragmented nature: consequences for biodiversity

Han Olff; Mark E. Ritchie

We discuss how fragmentation of resources and habitat operate differently on species diversity across spatial scales, ranging from positive effects on local species coexistence to negative effect on intermediate spatial scales, to again positive effects on large spatial and temporal scales. Species with different size and mobility can be regulated by different processes at the same spatial scale, a principle that may contribute to diversity. Differences in species richness between local communities may be differentially regulated at larger spatial scales. This causal connection between local and regional processes has several practical conservation implications. We furthermore show that fractal geometry can be a valuable tool in the separation of the effects of habitat loss (percentage cover), habitat fragmentation (contiguity) and habitat (texture). Especially important may be the notion that the same effective degree of fragmentation can exist at in a very aggregated habitat (one big patch) and a very sparse, random landscape (many small, nearby patches). The geometric behaviour and covariance of these three basic parameters of spatial configuration needs further investigation. The fractal approach is tested using data on heathland habitat configuration and biodiversity in 36 Dutch landscapes of each 9 km � 9 km. Fractal geometry was indeed successful in separating the patterns of habitat loss from habitat fragmentation in a subset of the landscapes, despite covariance across all landscapes. Habitat loss and habitat fragmentation both had a negative effect on diversity of heathland breeding birds, while only habitat loss seemed to affect butterfly species richness. We conclude that fractal geometry seems to be a promising approach for linking population and community processes to landscape spatial structure. # 2002 Elsevier Science B.V. All rights reserved.

Collaboration


Dive into the Han Olff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth S. Bakker

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Herbert H. T. Prins

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J. M. Gleichman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Smit

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Barend S. van Gemerden

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge