Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanako Bai is active.

Publication


Featured researches published by Hanako Bai.


Domestic Animal Endocrinology | 2016

A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses

Kazuya Kusama; Toshihiro Sakurai; Hanako Bai; Atsushi Ideta; Yoshito Aoyagi; Kazuhiko Imakawa

Interferon tau (IFNT) is the pregnancy recognition protein in all ruminants, and its expression is restricted to trophoblast cells. Interferon tau production increases as the conceptus elongates; however, its expression is downregulated soon after the initiation of conceptus attachment to the uterine epithelium. Our previous study identified that among 8 bovine IFNT genes, only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the periattachment period. To characterize whether Hippo signaling including a transcription cofactor yes-associated protein (YAP) was involved in the IFNT regulation, we examined the expression and effects of YAP and/or TEAD in human choriocarcinoma JEG3 and bovine trophoblast CT-1 cells, and in bovine conceptuses obtained from day 17, 20 or 22 pregnant animals (pregnant day 19.5 = day of conceptus attachment to the endometrium). YAP was expressed in bovine conceptuses and transfection of YAP or TEAD4, a transcription factor partner of YAP, expression plasmid increased the luciferase activity of IFNT2 and IFN-tau-c1 reporter plasmids in JEG3 cells. In the presence of YAP expression plasmid, TEAD2 or TEAD4 expression plasmid further upregulated transcriptional activity of IFNT2 or IFN-tau-c1 constructs, which were substantially reduced in the absence of the TEAD-binding site on IFNT2 or IFN-tau-c1 promoter region in JEG3 cells. In CT-1 cells, treatment with TEAD2, TEAD4, or YAP small-interfering RNA downregulated endogenous IFNT expression. It should be noted that TEAD2 and TEAD4 were predominantly localized in the nuclei of trophectoderm of Day 17 conceptuses, but nuclear localization appeared to be lower in those cells of conceptuses on days 20 and 22 of pregnancy. Moreover, the binding of TEAD4 to the TEAD-binding site of the IFN-tau-c1 promoter region in day 17 conceptuses was less in day 20 and 22 conceptuses. Furthermore, the level of YAP phosphorylation increased in day 20 and 22 conceptuses. These results indicated that although YAP/TEAD had the ability to up-regulate IFNT gene transcription on day 17, IFNT2 or IFN-tau-c1 was down-regulated following changes in the localization of TEAD2 and TEAD4 from the nucleus to the cytoplasm and increases in phosphorylation and degradation of YAP. These data suggest that TEAD relocation and/or YAP degradation following its phosphorylation down-regulates IFNT gene transcription after conceptus attachment to the uterine endometrium.


Journal of Reproduction and Development | 2017

Estrous cycle stage-dependent manner of type I interferon-stimulated genes induction in the bovine endometrium

Takahiro Shirozu; Hiroki Iwano; Takatoshi Ogiso; Toshiyuki Suzuki; Ahmed Z. Balboula; Hanako Bai; Manabu Kawahara; Koji Kimura; Hitomi Takahashi; Bai Rulan; Sung Woo Kim; Yojiro Yanagawa; Masashi Nagano; Kazuhiko Imakawa; Masashi Takahashi

Interferon tau (IFN-τ) is a ruminant-specific type I IFN secreted by a conceptus before its attachment to the uterus. IFN-τ induces the expression of IFN-stimulated genes (ISGs) via the type I IFN receptor (IFNAR), which is composed of IFNAR1 and IFNAR2 subunits in the endometrium. However, expression patterns of IFNARs during the estrous cycle have not been reported. We hypothesized that the response to a type I IFN changes along with IFNARs and the IFN-regulatory factors (IRFs) driving transcription of IFN signal-related genes and modulating a type I IFN signal during the estrous cycle. We investigated the estrous cycle stage-dependent type I IFN induction of ISGs and expression patterns of IFN signal-related genes in bovine endometrial tissues. Endometrial tissue pieces collected from bovine uteri at each estrous stage (early, mid, and late) were cultured with or without recombinant bovine IFN-α or concentrated pregnant uterine flushing (PUF) on day 18 after confirming the presence of a conceptus. IFN-α and PUF each significantly increased the expression of ISGs in endometrial tissues. The induction levels of the typical ISGs (MX1-a and ISG15) were significantly higher at the mid stage and correlated with high expression of IRFs at the mid stage. The immunostaining of IFNARs showed strong fluorescence intensities in luminal and glandular epithelia at the early and mid stages. Collectively, these results suggest that the endometrium exhibits estrous cycle stage-dependent responsiveness to type I IFN that may be associated with the expression of IFNARs and IRFs for pregnancy recognition.


Animal Reproduction Science | 2017

Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters

Wenjing Yan; Chihiro Kanno; Eiki Oshima; Yukiko Kuzuma; Sung Woo Kim; Hanako Bai; Masashi Takahashi; Yojiro Yanagawa; Masashi Nagano; Jun-ichi Wakamatsu; Manabu Kawahara

Improving sperm motility and viability are major goals to improve efficiency in the poultry industry. In this study, the effects of supplemental dietary turmeric by-product (TBP) from commercial turmeric production on sperm motility, viability, and antioxidative status were examined in domestic fowl. Mature Rhode Island Red roosters were divided into two groups - controls (groupC) without TBP administration and test subjects (groupT) fed a basal diet supplemented with 0.8g of TBP/day in a temperature-controlled rearing facility (Experiment 1) and 1.6g/day under heat stress (Experiment 2) for 4 weeks. In Experiment 1, TBP dietary supplementation increased the sperm motility variables straight-line velocity, curvilinear velocity, and linearity based on a computer-assisted semen analysis, 2 weeks following TBP supplementation. In Experiment 2, using flow cytometry, sperm viability at 3 and 4 weeks following TBP supplementation was greater in Group T than C, and this increase was consistent with a reduction in reactive oxygen species (ROS) production at 2 and 4 weeks. The results of both experiments clearly demonstrate that dietary supplementation with TBP enhanced sperm motility in the controlled-temperature conditions as well as sperm viability, and reduced ROS generation when heat stress prevailed. Considering its potential application in a range of environments, TBP may serve as an economical and potent antioxidant to improve rooster fertility.


Journal of Dairy Science | 2018

Hot topic: Pregnancy-induced expression of interferon-stimulated genes in the cervical and vaginal mucosal membranes

Hiroki Kunii; Keisuke Koyama; Tsukino Ito; Toshiyuki Suzuki; Ahmed Z. Balboula; Takahiro Shirozu; Hanako Bai; Masashi Nagano; Manabu Kawahara; Masashi Takahashi

In ruminants, IFN-tau (IFNT) is a pregnancy recognition signal secreted by the embryonic trophectoderm before implantation, and it induces the expression of IFN-stimulated genes (ISG) in the uterine endometrium and blood leukocytes. The expression of ISG in blood leukocytes could indicate the presence of a viable conceptus before return of the next estrus; however, expression levels have high variation for confirming pregnancy. We hypothesized that the secreted IFNT in the uterus would affect ISG expression in cervical and vaginal tissues because they are directly adjacent to the uterus. To prove the hypothesis, we investigated the expression of 3 ISG (ISG15, MX1, and MX2) in cervical and vaginal mucosal membranes collected from pregnant (n = 12) and nonpregnant (n = 11) lactating Holstein cows at 17 to 18 d after artificial insemination. Mucosal membrane samples of the cervical canal near the external os (cervix) and deep vaginal wall surrounding the external os (vagina) were collected separately by simply scraping with a curette on d 17 or 18 of pregnancy (d 1 = ovulation), at which time IFNT secretion into the maternal uterus is maximal. After pregnancy diagnosis on d 30 and 60, separately collected samples confirmed as pregnant and nonpregnant were used for evaluation of the expression of IFN-stimulated protein 15 kDa (ISG15) and myxovirus-resistance protein 1 and 2 (MX1, MX2) with quantitative real-time PCR. The collected mucosal membrane samples from cervix contained mostly cell clots showing membrane structure and a low content of blood cells. The expression levels of all 3 genes were significantly increased in pregnant cows compared with nonpregnant cows in both cervical and vaginal samples. These results suggest that increased expression of ISG in the cervix and vagina is a pregnancy-associated phenomenon and is highly affected by IFNT secreted from the conceptus through the uterus.


Animal Science Journal | 2018

Significance of CCN2 expression in bovine preimplantation development

Hiroki Akizawa; Yojiro Yanagawa; Masashi Nagano; Hanako Bai; Masashi Takahashi; Manabu Kawahara

In mammalian preimplantation development, the first cell lineage segregation occurs during the blastocyst stage, when the inner cell mass and trophectoderm (TE) differentiate. Species-specific analyses are essential to elucidate the molecular mechanisms that underlie this process, since they differ between various species. We previously showed that the reciprocal regulation of CCN2 and TEAD4 is required for proper TE differentiation in bovine blastocysts; however, the function of CCN2 during early embryogenesis has remained otherwise elusive. The present study assessed the spatiotemporal expression dynamics of CCN2 in bovine embryos, and evaluated how changes to CCN2 expression (using a CCN2 knockdown (KD) blastocyst model) regulate the expression of pluripotency-related genes such as OCT4 and NANOG. The conducted quantitative PCR analysis revealed that CCN2 mRNA was expressed in bovine oocytes (at the metaphase stage of their second meiosis) and embryos. Similarly, immunostaining detected both cytoplasmic and nuclear CCN2 at all analyzed oocyte and embryonic stages. Finally, both OCT4 and NANOG expression levels were shown to be significantly reduced in CCN2 KD blastocysts. Together, these results demonstrate that bovine CCN2 exhibits unique expression patterns during preimplantation development, and is required for the proper expression of key regulatory genes in bovine blastocysts.


Journal of Reproduction and Development | 2017

Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses

Kohta Kikuchi; Keisuke Sasaki; Hiroki Akizawa; Hayato Tsukahara; Hanako Bai; Masashi Takahashi; Yasuo Nambo; Hiroshi Hata; Manabu Kawahara

Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses.


Biochemical Journal | 2017

Novel endogenous retrovirus-derived transcript expressed in the bovine placenta is regulated by WNT signaling

Toshihiro Sakurai; So Nakagawa; Hanako Bai; Kazuya Kusama; Atsushi Ideta; Yoshito Aoyagi; Kazuyuki Kaneko; Kosuke Iga; Jiro Yasuda; Takayuki Miyazawa; Kazuhiko Imakawa

Endogenous retroviruses (ERVs) are involved in placentation; perhaps, the most well-known ERVs are the syncytins, actively transcribed env genes involved in cell–cell fusion and possible morphological variations. However, ERVs other than syncytins that play an important role in placental development have not been well characterized. To identify ERV genes expressed during the onset of placentation in the bovine species, we characterized the expression profiles of bovine conceptus transcripts during the peri-attachment period using RNA-seq analysis, and confirming some candidates through real-time PCR. Using in silico and PCR analyses, we identified a novel ERV proviral sequence derived from a gag region, designated bovine endogenous retroviruses (BERV)-K3, containing Gag_p10 and Gag_p24, zinc finger domain. Initial expression of this ERV in bovine conceptuses was on day 20 (day 0 = day of estrus), soon after conceptus attachment to the endometrial epithelium, and its high placental expression was maintained up to the middle of pregnancy. The BERV-K3 transcript was also found in the uterine luminal and glandular epithelia, liver, kidney, intestine, and skin. BERV-K3 is located on chromosome 7 and integrated within LOC100848658, from which noncoding RNA could be transcribed. Furthermore, the expression of endogenous BERV-K3 in bovine trophoblast cell lines was induced by a WNT agonist, a signaling system common to genes expressed in placentas. These data support the argument that during the evolutionary process, mammals incorporated not only similar ERV sequences, but also ERVs unique to individual species. BERV-K3 is in the latter case, likely providing functions unique to ruminant gestation.


Journal of Biological Chemistry | 2016

The Influence of Polyploidy and Genome Composition on Genomic Imprinting in Mice.

Wataru Yamazaki; Tomoko Amano; Hanako Bai; Masashi Takahashi; Manabu Kawahara

Genomic imprinting is an epigenetic mechanism that switches the expression of imprinted genes involved in normal embryonic growth and development in a parent-of-origin-specific manner. Changes in DNA methylation statuses from polyploidization are a well characterized epigenetic modification in plants. However, how changes in ploidy affect both imprinted gene expression and methylation status in mammals remains unclear. To address this, we used quantitative real time PCR to analyze expression levels of imprinted genes in mouse tetraploid fetuses. We used bisulfite sequencing to assess the methylation statuses of differentially methylated regions (DMRs) that regulate imprinted gene expression in triploid and tetraploid fetuses. The nine imprinted genes H19, Gtl2, Dlk1, Igf2r, Grb10, Zim1, Peg3, Ndn, and Ipw were all unregulated; in particular, the expression of Zim1 was more than 10-fold higher, and the expression of Ipw was repressed in tetraploid fetuses. The methylation statuses of four DMRs H19, intergenic (IG), Igf2r, and Snrpn in tetraploid and triploid fetuses were similar to those in diploid fetuses. We also performed allele-specific RT-PCR sequencing to determine the alleles expressing the three imprinted genes Igf2, Gtl2, and Dlk1 in tetraploid fetuses. These three imprinted genes showed monoallelic expression in a parent-of-origin-specific manner. Expression of non-imprinted genes regulating neural cell development significantly decreased in tetraploid fetuses, which might have been associated with unregulated imprinted gene expression. This study provides the first detailed analysis of genomic imprinting in tetraploid fetuses, suggesting that imprinted gene expression is disrupted, but DNA methylation statuses of DMRs are stable following changes in ploidy in mammals.


Reproduction, Fertility and Development | 2018

Exchange protein directly activated by cAMP (EPAC) promotes transcriptional activation of the decidual prolactin gene via CCAAT/enhancer-binding protein in human endometrial stromal cells

Kazuya Kusama; Kazuhiro Tamura; Hanako Bai; Toshihiro Sakurai; Hirotaka Nishi; Keiichi Isaka; Kazuhiko Imakawa; Mikihiro Yoshie


Journal of Reproduction and Development | 2018

Involvement of interferon-tau in the induction of apoptotic, pyroptotic, and autophagic cell death-related signaling pathways in the bovine uterine endometrium during early pregnancy

Toshiyuki Suzuki; Ryosuke Sakumoto; Ken-Go Hayashi; Takatoshi Ogiso; Hiroki Kunii; Takahiro Shirozu; Sung Woo Kim; Hanako Bai; Manabu Kawahara; Koji Kimura; Masashi Takahashi

Collaboration


Dive into the Hanako Bai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiro Sakurai

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge