Handan Melike Dönertaş
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Handan Melike Dönertaş.
Current Biology | 2016
Gülşah Merve Kılınç; Ayca Omrak; Füsun Özer; Torsten Günther; Ali Metin Büyükkarakaya; Erhan Bıçakçı; Douglas Baird; Handan Melike Dönertaş; Ayshin Ghalichi; Reyhan Yaka; Dilek Koptekin; Sinan Can Açan; Poorya Parvizi; Maja Krzewińska; Evangelia Daskalaki; Eren Yüncü; Nihan Dilşad Dağtaş; Andrew Fairbairn; Jessica Pearson; Gökhan Mustafaoğlu; Yılmaz Selim Erdal; Yasin Gökhan Çakan; İnci Togan; Jan Storå; Mattias Jakobsson; Anders Götherström
Summary The archaeological documentation of the development of sedentary farming societies in Anatolia is not yet mirrored by a genetic understanding of the human populations involved, in contrast to the spread of farming in Europe [1, 2, 3]. Sedentary farming communities emerged in parts of the Fertile Crescent during the tenth millennium and early ninth millennium calibrated (cal) BC and had appeared in central Anatolia by 8300 cal BC [4]. Farming spread into west Anatolia by the early seventh millennium cal BC and quasi-synchronously into Europe, although the timing and process of this movement remain unclear. Using genome sequence data that we generated from nine central Anatolian Neolithic individuals, we studied the transition period from early Aceramic (Pre-Pottery) to the later Pottery Neolithic, when farming expanded west of the Fertile Crescent. We find that genetic diversity in the earliest farmers was conspicuously low, on a par with European foraging groups. With the advent of the Pottery Neolithic, genetic variation within societies reached levels later found in early European farmers. Our results confirm that the earliest Neolithic central Anatolians belonged to the same gene pool as the first Neolithic migrants spreading into Europe. Further, genetic affinities between later Anatolian farmers and fourth to third millennium BC Chalcolithic south Europeans suggest an additional wave of Anatolian migrants, after the initial Neolithic spread but before the Yamnaya-related migrations. We propose that the earliest farming societies demographically resembled foragers and that only after regional gene flow and rising heterogeneity did the farming population expansions into Europe occur.
Scientific Reports | 2017
Handan Melike Dönertaş; Hamit İzgi; Altuğ Kamacıoğlu; Zhisong He; Philipp Khaitovich
It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an “up-down” pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons.
PLOS ONE | 2016
Handan Melike Dönertaş; Sergio Martínez Cuesta; Syed Asad Rahman; Janet M. Thornton
The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.
Genome Biology and Evolution | 2017
Recep Ozgur Taskent; Nursen Duha Alioglu; Evrim Fer; Handan Melike Dönertaş; Omer Gokcumen
Abstract Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations.
Proceedings of the Royal Society B: Biological Sciences | 2017
Gülşah Merve Kılınç; Dilek Koptekin; Çiğdem Atakuman; Arev Pelin Sümer; Handan Melike Dönertaş; Reyhan Yaka; Cemal Can Bilgin; Ali Metin Büyükkarakaya; Douglas Baird; Ezgi Altınışık; Pavel Flegontov; Anders Götherström; İnci Togan
The Neolithic transition in west Eurasia occurred in two main steps: the gradual development of sedentism and plant cultivation in the Near East and the subsequent spread of Neolithic cultures into the Aegean and across Europe after 7000 cal BCE. Here, we use published ancient genomes to investigate gene flow events in west Eurasia during the Neolithic transition. We confirm that the Early Neolithic central Anatolians in the ninth millennium BCE were probably descendants of local hunter–gatherers, rather than immigrants from the Levant or Iran. We further study the emergence of post-7000 cal BCE north Aegean Neolithic communities. Although Aegean farmers have frequently been assumed to be colonists originating from either central Anatolia or from the Levant, our findings raise alternative possibilities: north Aegean Neolithic populations may have been the product of multiple westward migrations, including south Anatolian emigrants, or they may have been descendants of local Aegean Mesolithic groups who adopted farming. These scenarios are consistent with the diversity of material cultures among Aegean Neolithic communities and the inheritance of local forager know-how. The demographic and cultural dynamics behind the earliest spread of Neolithic culture in the Aegean could therefore be distinct from the subsequent Neolithization of mainland Europe.
bioRxiv | 2018
Matías Fuentealba Valenzuela; Handan Melike Dönertaş; Rhianna Williams; Johnathan Labbadia; Janet M. Thornton; Linda Partridge
Advancing age is the dominant risk factor for most of the major killer diseases in developed countries. Hence, ameliorating the effects of ageing may prevent multiple diseases simultaneously. Drugs licensed for human use against specific diseases have proved to be effective in extending lifespan and healthspan in animal models, suggesting that there is scope for drug repurposing in humans. New bioinformatic methods to identify and prioritise potential anti-ageing compounds for humans are therefore of interest. In this study, we first used drug-protein interaction information, to rank 1,147 drugs by their likelihood of targeting ageing-related gene products in humans. Among 19 statistically significant drugs, 6 have already been shown to have pro-longevity properties in animal models (p < 0.001). Using the targets of each drug, we established its association with ageing at multiple levels of biological actions including pathways, functions and protein interactions. Finally, combining all the data, we calculated a comprehensive ranked list of drugs that predicted tanespimycin, an inhibitor of HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally validated the pro-longevity effect of tanespimycin through its HSP-90 target in Caenorhabditis elegans. Author Summary Human life expectancy is continuing to increase worldwide, as a result of successive improvements in living conditions and medical care. Although this trend is to be celebrated, advancing age is the major risk factor for multiple impairments and chronic diseases. As a result, the later years of life are often spent in poor health and lowered quality of life. However, these effects of ageing are not inevitable, because very long-lived people often suffer rather little ill-health at the end of their lives. Furthermore, laboratory experiments have shown that animals fed with specific drugs can live longer and with fewer age-related diseases than their untreated companions. We therefore need to identify drugs with anti-ageing properties for humans. We have therefore used computers to search for drugs that affect components and processes known to be important in human ageing. This approach worked, because it was able to re-discover several drugs known to increase lifespan in animal models, plus some new ones, including one that we tested experimentally and validated in this study. These drugs are now a high priority for animal testing and for exploring effects on human ageing.
Aging Cell | 2018
Handan Melike Dönertaş; Matías Fuentealba Valenzuela; Linda Partridge; Janet M. Thornton
Aging is the largest risk factor for a variety of noncommunicable diseases. Model organism studies have shown that genetic and chemical perturbations can extend both lifespan and healthspan. Aging is a complex process, with parallel and interacting mechanisms contributing to its aetiology, posing a challenge for the discovery of new pharmacological candidates to ameliorate its effects. In this study, instead of a target‐centric approach, we adopt a systems level drug repurposing methodology to discover drugs that could combat aging in human brain. Using multiple gene expression data sets from brain tissue, taken from patients of different ages, we first identified the expression changes that characterize aging. Then, we compared these changes in gene expression with drug‐perturbed expression profiles in the Connectivity Map. We thus identified 24 drugs with significantly associated changes. Some of these drugs may function as antiaging drugs by reversing the detrimental changes that occur during aging, others by mimicking the cellular defence mechanisms. The drugs that we identified included significant number of already identified prolongevity drugs, indicating that the method can discover de novo drugs that meliorate aging. The approach has the advantages that using data from human brain aging data, it focuses on processes relevant in human aging and that it is unbiased, making it possible to discover new targets for aging studies.
Archive | 2017
Gülşah Merve Kılınç; Dilek Koptekin; Çiğdem Atakuman; Arev Pelin Sümer; Handan Melike Dönertaş; Reyhan Yaka; Cemal Can Bilgin; Ali Metin Büyükkarakaya; Douglas Baird; Ezgi Altınışık; Pavel Flegontov; Anders Götherström; İnci Togan
The Neolithic transition in west Eurasia occurred in two main steps: the gradual development of sedentism and plant cultivation in the Near East and the subsequent spread of Neolithic cultures into the Aegean and across Europe after 7000 cal BCE. Here, we use published ancient genomes to investigate gene flow events in west Eurasia during the Neolithic transition. We confirm that the Early Neolithic central Anatolians in the ninth millennium BCE were likely descendants of local hunter–gatherers, rather than immigrants from the Levant or Iran. We further study the emergence of post-7000 cal BCE north Aegean Neolithic communities. Although Aegean farmers have frequently been assumed to be colonists originating from either central Anatolia or from the Levant, our findings raise alternative possibilities: north Aegean Neolithic populations may have been the product of multiple westward migrations, including south Anatolian emigrants, or they may have been descendants of local Aegean Mesolithic groups who adopted farming. These scenarios are consistent with the diversity of material cultures among Aegean Neolithic communities and the inheritance of local forager know-how. The demographic and cultural dynamics behind the earliest spread of Neolithic culture in the Aegean could therefore be distinct from the subsequent Neolithization of mainland Europe.
The 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans | 2017
Recep Ozgur Taskent; Duha Alioglu; Evrim Fer; Handan Melike Dönertaş; Omer Gokcumen
Archive | 2017
Gülşah Merve Kılınç; Dilek Koptekin; Çiğdem Atakuman; Arev Pelin Sümer; Handan Melike Dönertaş; Reyhan Yaka; Cemal Can Bilgin; Ali Metin Büyükkarakaya; Douglas Baird; Ezgi Altınışık; Pavel Flegontov; Anders Götherström; İnci Togan