Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hangfei Fu is active.

Publication


Featured researches published by Hangfei Fu.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation

Xinyuan Li; Pu Fang; Ya-Feng Li; Yin-Ming Kuo; Andrew J. Andrews; Gayani Nanayakkara; Candice Johnson; Hangfei Fu; Huimin Shan; Fuyong Du; Nicholas E. Hoffman; Daohai Yu; Satoru Eguchi; Muniswamy Madesh; Walter J. Koch; Jianxin Sun; Xiaohua Jiang; Hong Wang; Xiaofeng Yang

Objective— Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. Approach and Results— Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry–mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. Conclusions— ATP synthesis–uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.


Journal of Biological Chemistry | 2017

MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease A NOVEL MOUSE MODEL OF OBESITY PARADOX

Anthony Virtue; Candice Johnson; Jahaira Lopez-Pastrana; Ying Shao; Hangfei Fu; Xinyuan Li; Ya Feng Li; Ying Yin; Jietang Mai; Victor Rizzo; Michael G. Tordoff; Zsolt Bagi; Huimin Shan; Xiaohua Jiang; Hong Wang; Xiao-Feng Yang

Obesity paradox (OP) describes a widely observed clinical finding of improved cardiovascular fitness and survival in some overweight or obese patients. The molecular mechanisms underlying OP remain enigmatic partly due to a lack of animal models mirroring OP in patients. Using apolipoprotein E knock-out (apoE−/−) mice on a high fat (HF) diet as an atherosclerotic obesity model, we demonstrated 1) microRNA-155 (miRNA-155, miR-155) is significantly up-regulated in the aortas of apoE−/− mice, and miR-155 deficiency in apoE−/− mice inhibits atherosclerosis; 2) apoE−/−/miR-155−/− (double knock-out (DKO)) mice show HF diet-induced obesity, adipocyte hypertrophy, and present with non-alcoholic fatty liver disease; 3) DKO mice demonstrate HF diet-induced elevations of plasma leptin, resistin, fed-state and fasting insulin and increased expression of adipogenic transcription factors but lack glucose intolerance and insulin resistance. Our results are the first to present an OP model using DKO mice with features of decreased atherosclerosis, increased obesity, and non-alcoholic fatty liver disease. Our findings suggest the mechanistic role of reduced miR-155 expression in OP and present a new OP working model based on a single miRNA deficiency in diet-induced obese atherogenic mice. Furthermore, our results serve as a breakthrough in understanding the potential mechanism underlying OP and provide a new biomarker and novel therapeutic target for OP-related metabolic diseases.


Journal of Hematology & Oncology | 2017

Analyses of caspase-1-regulated transcriptomes in various tissues lead to identification of novel IL-1β-, IL-18- and sirtuin-1-independent pathways

Ya-Feng Li; Gayani Nanayakkara; Yu Sun; Xinyuan Li; Luqiao Wang; Ramon Cueto; Ying Shao; Hangfei Fu; Candice Johnson; Jiali Cheng; Xiongwen Chen; Wenhui Hu; Jun Yu; Eric T. Choi; Hong Wang; Xiaofeng Yang

BackgroundIt is well established that caspase-1 exerts its biological activities through its downstream targets such as IL-1β, IL-18, and Sirt-1. The microarray datasets derived from various caspase-1 knockout tissues indicated that caspase-1 can significantly impact the transcriptome. However, it is not known whether all the effects exerted by caspase-1 on transcriptome are mediated only by its well-known substrates. Therefore, we hypothesized that the effects of caspase-1 on transcriptome may be partially independent from IL-1β, IL-18, and Sirt-1.MethodsTo determine new global and tissue-specific gene regulatory effects of caspase-1, we took novel microarray data analysis approaches including Venn analysis, cooperation analysis, and meta-analysis methods. We used these statistical methods to integrate different microarray datasets conducted on different caspase-1 knockout tissues and datasets where caspase-1 downstream targets were manipulated.ResultsWe made the following important findings: (1) Caspase-1 exerts its regulatory effects on the majority of genes in a tissue-specific manner; (2) Caspase-1 regulatory genes partially cooperates with genes regulated by sirtuin-1 during organ injury and inflammation in adipose tissue but not in the liver; (3) Caspase-1 cooperates with IL-1β in regulating less than half of the genes involved in cardiovascular disease, organismal injury, and cancer in mouse liver; (4) The meta-analysis identifies 40 caspase-1 globally regulated genes across tissues, suggesting that caspase-1 globally regulates many novel pathways; and (5) The meta-analysis identified new cooperatively and non-cooperatively regulated genes in caspase-1, IL-1β, IL-18, and Sirt-1 pathways.ConclusionsOur findings suggest that caspase-1 regulates many new signaling pathways potentially via its known substrates and also via transcription factors and other proteins that are yet to be identified.


Frontiers in Bioscience | 2018

Uremic toxins are conditional danger- or homeostasis-associated molecular patterns.

Yu Sun; Candice Johnson; Jun Zhou; Luqiao Wang; Ya-Feng Li; Yifan Lu; Gayani Nanayakkara; Hangfei Fu; Ying Shao; Claudette Sanchez; William Y. Yang; Xin Wang; Eric T. Choi; Rongshan Li; Hong Wang; Xiaofeng Yang

We mined novel uremic toxin (UT) metabolomics/gene databases, and analyzed the expression changes of UT receptors and UT synthases in chronic kidney disease (CKD) and cardiovascular disease (CVD). We made the following observations: 1) UTs represent only 1/80th of human serum small-molecule metabolome; 2) Some UTs are increased in CKD and CVD; 3) UTs either induce or suppress the expression of inflammatory molecules; 4) The expression of UT genes is significantly modulated in CKD patients, and coronary artery disease (CAD) patients; 5) The expression of UT genes is upregulated by caspase-1 and TNF-alpha pathways but is inhibited in regulatory T cells. These results demonstrate that UTs are selectively increased, and serve as danger signal-associated molecular patterns (DAMPs) and homeostasis-associated molecular patterns (HAMPs) that modulate inflammation. These results also show that some UT genes are upregulated in CKD and CAD via caspase-1/inflammatory cytokine pathways, rather than by purely passive accumulation.


Journal of Hematology & Oncology | 2017

A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors

Luqiao Wang; Gayani Nanayakkara; Qian Yang; Hongmei Tan; Charles Drummer; Yu Sun; Ying Shao; Hangfei Fu; Ramon Cueto; Huimin Shan; Teodoro Bottiglieri; Ya-Feng Li; Candice Johnson; William Y. Yang; Fan Yang; Yanjie Xu; Hang Xi; Weiqing Liu; Jun Yu; Eric T. Choi; Xiaoshu Cheng; Hong Wang; Xiao-Feng Yang

BackgroundNuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood.MethodsTo determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions.ResultsWe made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs.ConclusionsBased on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.


Journal of Hematology & Oncology | 2017

Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation: a comprehensive database mining study

Hangfei Fu; Nish Vadalia; Eric R. Xue; Candice Johnson; Luqiao Wang; William Y. Yang; Claudette Sanchez; Jun Nelson; Qian Chen; Eric T. Choi; Jian Xing Ma; Jun Yu; Hong Wang; Xiaofeng Yang

BackgroundCurrent angiogenic therapies for cancers and cardiovascular diseases have not yet achieved expected benefits, which reflects the need for improved understanding of angiogenesis. In this study, we focused on solving the problem of whether tissues have different angiogenic potentials (APs) in physiological conditions and how angiogenesis is regulated in various disease conditions.MethodsIn healthy and diseased human and mouse tissues, we profiled the expression of 163 angiogenic genes, including transcription regulators (TRs), growth factors and receptors (GF/Rs), cytokines and chemokines (C/Cs), and proteases and inhibitors (P/Is). TRs were categorized as inflammatory, homeostatic, and endothelial cell-specific TRs, and C/Cs were categorized as pro-angiogenic, anti-angiogenic, and bi-functional C/Cs.ResultsWe made the following findings: (1) the human heart, muscle, eye, pancreas, and lymph node are among the tissues with the highest APs; (2) tissues with high APs have more active angiogenic pathways and angiogenic C/C responses; (3) inflammatory TRs dominate regulation of all angiogenic C/Cs; homeostatic TRs regulate all to a lower extent, while endothelial cell-specific TRs mainly regulate pro-angiogenic and bi-functional C/Cs; (4) tissue AP is positively correlated with the expression of oxygen sensors PHD2 and HIF1B, VEGF pathway gene VEGFB, and stem cell gene SOX2; (5) cancers of the digestive system tend to have increased angiogenesis dominated by endothelial cell-specific pro-angiogenic pathways, while lung cancer and prostate cancer have significantly decreased angiogenesis; and (6) endothelial cell-specific pro-angiogenic pathways are significantly increased in thrombus-derived leukocytes in patients with acute coronary artery disease.ConclusionsOur results demonstrate that thrombus-derived leukocytes express more endothelial cell-specific angiogenic markers to directly promote angiogenesis after myocardial infarction and that certain solid tumors may be more sensitive to anti-angiogenic therapies than others.


Frontiers in Physiology | 2018

DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

Huihong Zeng; Gayani Nanayakkara; Ying Shao; Hangfei Fu; Yu Sun; Ramon Cueto; William Y. Yang; Qian Yang; Haitao Sheng; Na Wu; Luqiao Wang; Wuping Yang; Hongping Chen; Lijian Shao; Jianxin Sun; Xuebin Qin; Joon Y. Park; Konstantinos Drosatos; Eric T. Choi; Qingxian Zhu; Hong Wang; Xiaofeng Yang

Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.


Frontiers in Physiology | 2017

Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

Qian Yang; Gayani Nanayakkara; Charles Drummer; Yu Sun; Candice Johnson; Ramon Cueto; Hangfei Fu; Ying Shao; Luqiao Wang; William Y. Yang; Peng Tang; Liwen Liu; Shuping Ge; Xiaodong Zhou; Mohsin Khan; Hong Wang; Xiao-Feng Yang

Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.


Journal of Hematology & Oncology | 2016

Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study

Luqiao Wang; Hangfei Fu; Gayani Nanayakkara; Ya-Feng Li; Ying Shao; Candice Johnson; Jiali Cheng; William Y. Yang; Fan Yang; Muriel Lavallee; Yanjie Xu; Xiaoshu Cheng; Hang Xi; Jonathan Yi; Jun Yu; Eric T. Choi; Hong Wang; Xiaofeng Yang


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Abstract 371: Deficiency in Microrna-155 Leads to Reduced Atherosclerosis, Increased Obesity and Nonalcoholic Fatty Liver Disease--A Novel Mouse Model of Metabolically Healthy Obesity

Candice Johnson; Anthony Virtue; Jahaira Lopez-Pastrana; Ying Shao; Hangfei Fu; Xinyuan Li; Ya-Feng Li; Ying Yin; Jietang Mai; Victor Rizzo; Michael Tordoff; Zsolt Bagi; Huimin Shan; Xiaohua Jiang; Hong Wang; Xiao-Feng Yang

Collaboration


Dive into the Hangfei Fu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge