Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Y. Yang is active.

Publication


Featured researches published by William Y. Yang.


Circulation Research | 2016

Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells

Hang Xi; Yuling Zhang; Yanjie Xu; William Y. Yang; Xiaohua Jiang; Xiaojin Sha; Xiaoshu Cheng; Jingfeng Wang; Xuebin Qin; Jun Yu; Yong Ji; Xiaofeng Yang; Hong Wang

RATIONALE Endothelial injury is an initial mechanism mediating cardiovascular disease. OBJECTIVE Here, we investigated the effect of hyperhomocysteinemia on programed cell death in endothelial cells (EC). METHODS AND RESULTS We established a novel flow-cytometric gating method to define pyrotosis (Annexin V(-)/Propidium iodide(+)). In cultured human EC, we found that: (1) homocysteine and lipopolysaccharide individually and synergistically induced inflammatory pyroptotic and noninflammatory apoptotic cell death; (2) homocysteine/lipopolysaccharide induced caspase-1 activation before caspase-8, caspase-9, and caspase-3 activations; (3) caspase-1/caspase-3 inhibitors rescued homocysteine/lipopolysaccharide-induced pyroptosis/apoptosis, but caspase-8/caspase-9 inhibitors had differential rescue effect; (4) homocysteine/lipopolysaccharide-induced nucleotide-binding oligomerization domain, and leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) protein caused NLRP3-containing inflammasome assembly, caspase-1 activation, and interleukin (IL)-1β cleavage/activation; (5) homocysteine/lipopolysaccharide elevated intracellular reactive oxygen species, (6) intracellular oxidative gradient determined cell death destiny as intermediate intracellular reactive oxygen species levels are associated with pyroptosis, whereas high reactive oxygen species corresponded to apoptosis; (7) homocysteine/lipopolysaccharide induced mitochondrial membrane potential collapse and cytochrome-c release, and increased B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio which were attenuated by antioxidants and caspase-1 inhibitor; and (8) antioxidants extracellular superoxide dismutase and catalase prevented homocysteine/lipopolysaccharide -induced caspase-1 activation, mitochondrial dysfunction, and pyroptosis/apoptosis. In cystathionine β-synthase-deficient (Cbs(-/-)) mice, severe hyperhomocysteinemia-induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1, caspase-9 protein/activity and B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio in Cbs(-/-) aorta and human umbilical vein endothelial cells. Finally, homocysteine-induced DNA fragmentation was reversed in caspase-1(-/-) EC. Hyperhomocysteinemia-induced aortic endothelial dysfunction was rescued in caspase-1(-/-) and NLRP3(-/-) mice. CONCLUSIONS Hyperhomocysteinemia preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis.


Burns & Trauma | 2015

Pathological conditions re-shape physiological Tregs into pathological Tregs

William Y. Yang; Ying Shao; Jahaira Lopez-Pastrana; Jietang Mai; Hong Wang; Xiao-Feng Yang

CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, a significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh, and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that “physiological Tregs” have been re-shaped into “pathological Tregs” in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.


Canadian Journal of Physiology and Pharmacology | 2017

Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells.

Xinyuan Li; Pu Fang; William Y. Yang; Kylie Chan; Muriel Lavallee; Keman Xu; Tracy Gao; Hong Wang; Xiaofeng Yang

Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.


Journal of Cardiovascular Translational Research | 2016

Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation—Novel Paradigm and Therapeutic Potential

Xin Wang; Ya-Feng Li; Gayani Nanayakkara; Ying Shao; Bin Liang; Lauren Cole; William Y. Yang; Xinyuan Li; Ramon Cueto; Jun Yu; Hong Wang; Xiao-Feng Yang

There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.


Journal of Cardiovascular Translational Research | 2016

Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets—“Sand Out and Gold Stays”

Ying Shao; Valeria Chernaya; Candice Johnson; William Y. Yang; Ramon Cueto; Xiaojin Sha; Yi Zhang; Xuebin Qin; Jianxin Sun; Eric T. Choi; Hong Wang; Xiao-Feng Yang

To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of “Sand out and Gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.


Cytokine | 2017

IL-35, as a newly proposed homeostasis-associated molecular pattern, plays three major functions including anti-inflammatory initiator, effector, and blocker in cardiovascular diseases

Xinyuan Li; Pu Fang; William Y. Yang; Hong Wang; Xiao-Feng Yang

IL-35 is a new anti-inflammatory cytokine identified in 2007, which inhibits inflammation and immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. The unique initiator and effector anti-inflammatory properties of IL-35 bring tremendous interest in investigating its role during cardiovascular disease (CVD) development, in which inflammatory processes are firmly established as central to its development and complications. In this review, we update recent understanding of how IL-35 is produced and regulated in the cells. In addition, we outline the signaling pathways affected by IL-35 in different cell types. Furthermore, we summarize the roles of IL-35 in atherosclerosis, diabetes, and sepsis. We propose a new working model that IL-35 and its receptors are novel homeostasis-associated molecular pattern (HAMP) and HAMP receptors, respectively, which explains the complex nature of IL-35 signaling as an anti-inflammatory initiator, effector and blocker. Thorough understanding of this topic is significant towards development of new anti-inflammatory therapies against CVDs and other diseases. (total words: 163).


Circulation Research | 2016

Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA HypomethylationNovelty and Significance

Jiyeon Yang; Pu Fang; Daohai Yu; Lixiao Zhang; Daqing Zhang; Xiaohua Jiang; William Y. Yang; Teodoro Bottiglieri; Satya P. Kunapuli; Jun Yu; Eric T. Choi; Yong Ji; Xiaofeng Yang; Hong Wang

RATIONALE Patients with chronic kidney disease (CKD) develop hyperhomocysteinemia and have a higher cardiovascular mortality than those without hyperhomocysteinemia by 10-fold. OBJECTIVE We investigated monocyte differentiation in human CKD and cardiovascular disease (CVD). METHODS AND RESULTS We identified CD40 as a CKD-related monocyte activation gene using CKD-monocyte -mRNA array analysis and classified CD40 monocyte (CD40+CD14+) as a stronger inflammatory subset than the intermediate monocyte (CD14++CD16+) subset. We recruited 27 patients with CVD/CKD and 14 healthy subjects and found that CD40/CD40 classical/CD40 intermediate monocyte (CD40+CD14+/CD40+CD14++CD16-/CD40+CD14++CD16+), plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine levels were higher in CVD and further elevated in CVD+CKD. CD40 and CD40 intermediate subsets were positively correlated with plasma/cellular homocysteine levels, S-adenosylhomocysteine and S-adenosylmethionine but negatively correlated with estimated glomerular filtration rate. Hyperhomocysteinemia was established as a likely mediator for CKD-induced CD40 intermediate monocyte, and reduced S-adenosylhomocysteine/S-adenosylmethionine was established for CKD-induced CD40/CD40 intermediate monocyte. Soluble CD40 ligand, tumor necrosis factor (TNF)-α/interleukin (IL)-6/interferon (IFN)-γ levels were elevated in CVD/CKD. CKD serum/homocysteine/CD40L/increased TNF-α/IL-6/IFN-γ-induced CD40/CD40 intermediate monocyte in peripheral blood monocyte. Homocysteine and CKD serum-induced CD40 monocyte were prevented by neutralizing antibodies against CD40L/TNF-α/IL-6. DNA hypomethylation was found on nuclear factor-κB consensus element in CD40 promoter in white blood cells from patients with CKD with lower S-adenosylmethionine / S-adenosylhomocysteine ratios. Finally, homocysteine inhibited DNA methyltransferase-1 activity and promoted CD40 intermediate monocyte differentiation, which was reversed by folic acid in peripheral blood monocyte. CONCLUSIONS CD40 monocyte is a novel inflammatory monocyte subset that appears to be a biomarker for CKD severity. Hyperhomocysteinemia mediates CD40 monocyte differentiation via soluble CD40 ligand induction and CD40 DNA hypomethylation in CKD.


Frontiers in Bioscience | 2018

Uremic toxins are conditional danger- or homeostasis-associated molecular patterns.

Yu Sun; Candice Johnson; Jun Zhou; Luqiao Wang; Ya-Feng Li; Yifan Lu; Gayani Nanayakkara; Hangfei Fu; Ying Shao; Claudette Sanchez; William Y. Yang; Xin Wang; Eric T. Choi; Rongshan Li; Hong Wang; Xiaofeng Yang

We mined novel uremic toxin (UT) metabolomics/gene databases, and analyzed the expression changes of UT receptors and UT synthases in chronic kidney disease (CKD) and cardiovascular disease (CVD). We made the following observations: 1) UTs represent only 1/80th of human serum small-molecule metabolome; 2) Some UTs are increased in CKD and CVD; 3) UTs either induce or suppress the expression of inflammatory molecules; 4) The expression of UT genes is significantly modulated in CKD patients, and coronary artery disease (CAD) patients; 5) The expression of UT genes is upregulated by caspase-1 and TNF-alpha pathways but is inhibited in regulatory T cells. These results demonstrate that UTs are selectively increased, and serve as danger signal-associated molecular patterns (DAMPs) and homeostasis-associated molecular patterns (HAMPs) that modulate inflammation. These results also show that some UT genes are upregulated in CKD and CAD via caspase-1/inflammatory cytokine pathways, rather than by purely passive accumulation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2018

IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14)

Xinyuan Li; Ying Shao; Xiaojin Sha; Pu Fang; Yin-Ming Kuo; Andrew J. Andrews; Ya-Feng Li; William Y. Yang; Massimo Maddaloni; David W. Pascual; Jin Jun Luo; Xiaohua Jiang; Hong Wang; Xiaofeng Yang

Objective— IL-35 (interleukin-35) is an anti-inflammatory cytokine, which inhibits immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. It remains unknown whether atherogenic stimuli induce IL-35 and whether IL-35 inhibits atherogenic lipid-induced endothelial cell (EC) activation and atherosclerosis. EC activation induced by hyperlipidemia stimuli, including lysophosphatidylcholine is considered as an initiation step for monocyte recruitment and atherosclerosis. In this study, we examined the expression of IL-35 during early atherosclerosis and the roles and mechanisms of IL-35 in suppressing lysophosphatidylcholine-induced EC activation. Approach and Results— Using microarray and ELISA, we found that IL-35 and its receptor are significantly induced during early atherosclerosis in the aortas and plasma of ApoE (apolipoprotein E) knockout mice—an atherosclerotic mouse model—and in the plasma of hypercholesterolemic patients. In addition, we found that IL-35 suppresses lysophosphatidylcholine-induced monocyte adhesion to human aortic ECs. Furthermore, our RNA-sequencing analysis shows that IL-35 selectively inhibits lysophosphatidylcholine-induced EC activation-related genes, such as ICAM-1 (intercellular adhesion molecule-1). Mechanistically, using flow cytometry, mass spectrometry, electron spin resonance analyses, and chromatin immunoprecipitation-sequencing analyses, we found that IL-35 blocks lysophosphatidylcholine-induced mitochondrial reactive oxygen species, which are required for the induction of site-specific H3K14 (histone 3 lysine 14) acetylation, increased binding of proinflammatory transcription factor AP-1 in the promoter of ICAM-1, and induction of ICAM-1 transcription in human aortic EC. Finally, IL-35 cytokine therapy suppresses atherosclerotic lesion development in ApoE knockout mice. Conclusions— IL-35 is induced during atherosclerosis development and inhibits mitochondrial reactive oxygen species-H3K14 acetylation-AP-1–mediated EC activation.


Journal of Hematology & Oncology | 2017

A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors

Luqiao Wang; Gayani Nanayakkara; Qian Yang; Hongmei Tan; Charles Drummer; Yu Sun; Ying Shao; Hangfei Fu; Ramon Cueto; Huimin Shan; Teodoro Bottiglieri; Ya-Feng Li; Candice Johnson; William Y. Yang; Fan Yang; Yanjie Xu; Hang Xi; Weiqing Liu; Jun Yu; Eric T. Choi; Xiaoshu Cheng; Hong Wang; Xiao-Feng Yang

BackgroundNuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood.MethodsTo determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions.ResultsWe made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs.ConclusionsBased on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.

Collaboration


Dive into the William Y. Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge