Hanna Kokkonen
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanna Kokkonen.
Biomacromolecules | 2008
Hanna Kokkonen; Clara Cassinelli; René Verhoef; Marco Morra; Henk A. Schols; Juha Tuukkanen
The gold standard for implant metals is titanium, and coatings such as collagen-I, RGD-peptide, chondroitin sulfate, and calcium phosphate have been used to modify its biocompatibility. We investigated how titanium coated with pectins, adaptable bioactive plant polysaccharides with anti-inflammatory effects, supports osteoblast differentiation. MC3T3-E1 cells, primary murine osteoblasts, and human mesenchymal cells (hMC) were cultured on titanium coated with rhamnogalacturonan-rich modified hairy regions (MHR-A and MHR-B) of apple pectin. Alkaline phosphatase (ALP) expression and activity, calcium deposition, and cell spreading were investigated. MHR-B, but not MHR-A, supports osteoblast differentiation. The MHR-A surface was not mineralized, but on MHR-B, the average mineralized area was 14.0% with MC3T3-E1 cells and 26.6% with primary osteoblasts. The ALP activity of hMCs on MHR-A was 58.3% at day 7 and 9.3% from that of MHR-B at day 10. These data indicate that modified pectin nanocoatings may enhance the biocompatibility of bone and dental implants.
Colloids and Surfaces B: Biointerfaces | 2014
Maria Persson; Gabriela S. Lorite; Hanna Kokkonen; Sung-Woo Cho; Petri Lehenkari; Mikael Skrifvars; Juha Tuukkanen
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the materials ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.
Journal of Biomedical Materials Research Part A | 2010
Hanna Kokkonen; Helena Niiranen; Henk A. Schols; Marco Morra; Frej Stenbäck; Juha Tuukkanen
Multiform coated titanium implants are widely used in orthopedic and dental surgery. In this study, we have investigated the reactivity of pectin-coated titanium samples implanted under the latissimus dorsi-muscle fascia of rats. Samples were coated with two enzyme treated apple pectins; modified hairy regions (MHR-A and MHR-B) that differed in chemical structure. Aminated (AMI) and uncoated titanium (Ti) served as controls. The thicknesses of the peri-implant fibrous tissue capsules formed 1 or 3 weeks after implantation were measured as indicative of possible inflammatory reactions toward the biomaterials. After 1 week, the MHR-B implant was surrounded by a thicker fibrous capsule (42.9 microm) than any of the other sample types: MHR-A (33.2 microm), AMI (32.5 microm), and Ti (32.3 microm), the last one being the only statistically significant difference. After 3 weeks, however, this difference disappeared; the capsule thicknesses around MHR-B and Ti implants had decreased to the values found for AMI and MHR-A. Additionally, the capsule formation represents merely a stromal rather than an inflammatory reaction, as indicated by the absence of activated macrophages or foreign body giant cells in the capsules. These results indicate for the first time the in vivo tolerability of covalently linked pectins, and suggest the feasibility of pectin-coated bone and dental implants for clinical use.
Journal of Biomedical Materials Research Part A | 2012
Hanna Kokkonen; René Verhoef; Kyösti Kauppinen; V. Muhonen; Bodil Jørgensen; Iben Damager; Henk A. Schols; Marco Morra; Peter Ulvskov; Juha Tuukkanen
Pectins, complex plant-derived polysaccharides, are novel candidates for biomaterial nanocoatings. Pectic rhamnogalacturonan-I regions (RG-I) can be enzymatically treated to so-called modified hairy regions (MHR). We surveyed the growth and differentiation of murine preosteoblastic MC3T3-E1 cells on Petri dishes coated with RG-Is from native or genetically engineered potato tubers. Uncoated tissue culture polystyrene (TCPS) and aminated (AMI) dishes served as controls. MHRPTR_GAL sample was depleted of galactose (9 mol % galactose; 23 mol % arabinose) and MHRPTR_ARA of arabinose (61 mol % galactose; 6 mol % arabinose). Wild-type (modified hairy region from potato pectin (MHRP)_WT) fragment contained default amounts (58 mol % galactose; 13 mol % arabinose) of both sugars. Focal adhesions (FAs) indicating cellular attachment were quantified. Reverse transcriptase polymerase chain reaction (RT-PCR) of alkaline phosphatase and osteocalcin genes indicating osteoblastic differentiation was performed along with staining the produced calcium with tetracycline as an indicator of osteoblastic differentiation. Osteoblasts proliferated on all the samples to some extent. The control surfaces performed better than any of the pectin samples, of which the MHRP_WT seemed to function best. FA length was greater on MHRPTR_GAL than on other pectin samples, otherwise the mutants did not significantly deviate. RT-PCR results indicate that differences between the samples at the gene expression level might be even subtler. However, tetracycline-stained calcium-containing mineral was detected merely only on uncoated TCPS. These results indicate the possibility to affect bone cell growth with in vivo-modified pectin fragments, consecutively providing information on the significance of certain monosaccharides on the biocompatibility of these polysaccharides.
Calcified Tissue International | 2013
Elina Kylmäoja; Hanna Kokkonen; Kyösti Kauppinen; Piret Hussar; Tetsuji Sato; Ketil Haugan; Bjarne Due Larsen; Juha Tuukkanen
Osteoclasts are formed by the fusion of mononuclear precursor cells of the monocyte–macrophage lineage. Among several putative mechanisms, gap-junctional intercellular communication (GJC) has been proposed to have a role in osteoclast fusion and bone resorption. We examined the role of GJC in osteoclastogenesis and in vitro bone resorption with mouse bone marrow hematopoietic stem cells and RAW 264.7 cells. Blocking of gap junctions with 18-α-glycyrrhetinic acid (18GA) led to inhibition of osteoclastogenesis and in vitro bone resorption. Similarly, the GJC inhibitor GAP27 inhibited osteoclast formation. GJC modulation with the antiarrhythmic peptides (AAPs) led to increased amounts of multinuclear RAW 264.7 osteoclasts as well as increased number of nuclei per multinuclear cell. In the culture of bone marrow hematopoietic stem cells in the presence of bone marrow stromal cells AAP reduced the number of osteoclasts, and coculture of MC3T3-E1 preosteoblasts with RAW 264.7 macrophages prevented the action of AAPs to promote osteoclastogenesis. The present data indicate that AAPs modulate the fusion of the pure culture of cells of the monocyte–macrophage lineage. However, the fusion is influenced by GJC in cells of the osteoblast lineage.
Colloids and Surfaces B: Biointerfaces | 2015
Jenni Pasuri; Jani Holopainen; Hanna Kokkonen; Maria Persson; Kyösti Kauppinen; Petri Lehenkari; Eero Santala; Mikko Ritala; Juha Tuukkanen
Electrospinning is a method to produce lightweight, resorbable and bioinspired scaffolds for tissue engineering. Here we investigated the influence of electrospun hydroxyapatite fibers (HA) on macrophages and osteoclasts. A mouse macrophage cell line (RAW 264.7) and human bone marrow derived primary osteoclasts (hOC) were cultured with electrospun HA fibers embedded in Matrigel. Cell morphology and the secretion of pro-inflammatory cytokines (IL-6 and TNF-α) were analyzed using macrophages. Both fluorescent microscopy and scanning electron microscopy indicated that the cell morphology differed on the various materials (HA fibers on Matrigel, pure Matrigel and a glass control). Control macrophages were activated with bacterial lipopolysaccharide (LPS) but electrospun HA did not provoke an inflammatory response. Cytokine secretion detected with enzyme-linked immunosorbent assay (ELISA) also supported this observation. LPS, but not HA fibers, stimulated TNF-α and IL-6 secretion by macrophages at the 2 day time point. After 4 days in culture there was an increasing trend in cytokine secretion in the HA fiber samples. Human bone marrow myeloid precursor cells were able to fuse and differentiate on the fibrous mineral scaffold to form functional multinuclear osteoclasts that were able to resorb the HA nanofibers. This indicates that osteoclasts do not necessarily need a continuous bone surface but osteoclast ruffled border membranes can form a resorption interface with a fibrous mineral scaffold.
Biointerphases | 2014
Jani Holopainen; Kyösti Kauppinen; Kenichiro Mizohata; Eero Santala; Esa Mikkola; Mikko Heikkilä; Hanna Kokkonen; Markku Leskelä; Petri Lehenkari; Juha Tuukkanen; Mikko Ritala
Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.
Biomacromolecules | 2007
Hanna Kokkonen; Joanna Ilvesaro; Marco Morra; Henk A. Schols; Juha Tuukkanen
Archive | 2015
Riina Rytivaara; Irina I. Nagy; Hanna Kokkonen; Jorma Maatta; Antti Koskela; Juha Risteli; Seppo Vainio; Juha Tuukkanen
Turku Biomaterials Day, University of Turku, Turku, Finland, October 24, 2013 | 2013
Maria Persson; Gabriela S. Lorite; Hanna Kokkonen; Sung-Woo Cho; Mikael Skrifvars; Juha Tuukkanen