Hanna Tiainen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanna Tiainen.
Journal of Biomaterials Applications | 2011
Roya Sabetrasekh; Hanna Tiainen; S. Petter Lyngstadaas; Janne E. Reseland; Håvard J. Haugen
The current study compares biocompatibility, cell growth and morphology, pore diameter distribution, and interconnectivity of a novel titanium dioxide (TiO2) bone graft substitute granules with three different commercially available bone graft granules Natix®, Straumann® BoneCeramic, and Bio-Oss®. Human primary mesenchymal stem cells were cultured on the bone graft substitutes and cell viability and proliferation were evaluated after 1 and 3 days. The microstructural properties of the bone graft substitutes were evaluated by scanning electron microscopy, micro-computed tomography analysis, and mechanical testing. The cell viability and proliferation, porosity, interconnectivity, open pore size, and surface area-to-volume ratio of TiO2 granules were significantly higher than commercial bone granules (Bio-Oss® and Straumann ® BoneCeramic).
Acta Biomaterialia | 2012
Hanna Tiainen; Johan Caspar Wohlfahrt; Anders Verket; S. Petter Lyngstadaas; Håvard J. Haugen
The osteoconductive capacity of TiO(2) scaffolds was investigated by analysing the bone ingrowth into the scaffold structure following their placement into surgically modified extraction sockets in Gottingen minipigs. Non-critical size defects were used in order to ensure sufficient bone regeneration for the evaluation of bone ingrowth to the porous scaffold structure, and sham sites were used as positive control. Microcomputed tomographic analysis revealed 73.6±11.1% of the available scaffold pore space to be occupied by newly formed bone tissue, and the volumetric bone mineral density of the regenerated bone was comparable to that of the native cortical bone. Furthermore, histological evidence of vascularization and the presence of bone lamellae surrounding some of the blood vessels were also observed within the inner regions of the scaffold, indicating that the highly interconnected pore structure of the TiO(2) scaffolds supports unobstructed formation of viable bone tissue within the entire scaffold structure. In addition, bone tissue was found to be in direct contact with 50.0±21.5% of the TiO(2) struts, demonstrating the good biocompatibility and osteoconductivity of the scaffold material.
Biointerphases | 2012
Anders Verket; Hanna Tiainen; Håvard J. Haugen; S. Petter Lyngstadaas; Ola Nilsen; Janne E. Reseland
The aim was to compare the protein release from normal human osteoblasts (NHO) cultured on scaffolds with similar morphology but different coatings. Different ceramic coatings; TiO2, SiO2 and calcium phosphate (CaP); Ca9HPO4(PO4)5OH, were applied to porous TiO2 scaffolds prepared by polymer sponge replication. NHO were cultured on scaffolds in triplicates. The concentration of cytokines and Ca2+, and alkaline phosphatase (ALP) activity in the cell media was quantified. The secretion of osteopontin, osteoprotegerin, vascular endothelial growth factor and interleukin-6 was higher from NHO on TiO2 compared to SiO2 and CaP. The secretion from cells on the three scaffolds was, however, either similar or lower than the control cells cultured on plastic. The Ca2+ concentration was higher in cell media on CaP the first week, and no difference in ALP activity was observed. TiO2 coating induced a higher secretion of factors indicating enhanced osteoblast differentiation as compared to CaP and SiO2.
Journal of Tissue Engineering | 2013
Helen Pullisaar; Hanna Tiainen; Maria A. Landin; Ståle Petter Lyngstadaas; Håvard J. Haugen; Janne E. Reseland; Esben Østrup
The aim of this study was to develop a three-dimensional porous bone graft material as vehicle for simvastatin delivery and to investigate its effect on primary human osteoblasts from three donors. Highly porous titanium dioxide (TiO2) scaffolds were submerged into simvastatin containing alginate solution. Microstructure of scaffolds, visualized by scanning electron microscopy and micro-computed tomography, revealed an evenly distributed alginate layer covering the surface of TiO2 scaffold struts. Progressive and sustained simvastatin release was observed for up to 19 days. No cytotoxic effects on osteoblasts were observed by scaffolds with simvastatin when compared to scaffolds without simvastatin. Expression of osteoblast markers (collagen type I alpha 1, alkaline phosphatase, bone morphogenetic protein 2, osteoprotegerin, vascular endothelial growth factor A and osteocalcin) was quantified using real-time reverse transcriptase–polymerase chain reaction. Secretion of osteoprotegerin, vascular endothelial growth factor A and osteocalcin was analysed by multiplex immunoassay (Luminex). The relative expression and secretion of osteocalcin was significantly increased by cells cultured on scaffolds with 10 µM simvastatin when compared to scaffolds without simvastatin after 21 days. In addition, secretion of vascular endothelial growth factor A was significantly enhanced from cells cultured on scaffolds with both 10 nM and 10 µM simvastatin when compared to scaffolds without simvastatin at day 21. In conclusion, the results indicate that simvastatin-coated TiO2 scaffolds can support a sustained release of simvastatin and induce osteoblast differentiation. The combination of the physical properties of TiO2 scaffolds with the osteogenic effect of simvastatin may represent a new strategy for bone regeneration in defects where immediate load is wanted or unavailable.
Biomedical Materials | 2011
Hanna Tiainen; M Monjo; J Knychala; Ola Nilsen; Staale Petter Lyngstadaas; Jan Eirik Ellingsen; Håvard J. Haugen
This study investigates the effect of fluoride surface modification on the surface properties of polycrystalline ceramic TiO(2) and the biological response of murine osteoblast cells to fluoride-modified TiO(2) in vitro. Fluoride concentrations up to 9 at.% were detected and the fluoride was found to bind to the surface in a ligand exchange reaction between surface hydroxyl groups and the fluoride anions from the HF. No significant changes in the surface topography were detected. In vitro experiments were performed in order to evaluate the biological response of the MC3T3-E1 cells to the fluoride-modified ceramic TiO(2) surfaces. No difference in the lactate dehydrogenase (LDH) activity was seen in comparison to unmodified samples, apart from the highest fluoride concentration (∼9 at.%) which was found to be more toxic to the cells. Real-time PCR analysis showed no conclusive evidence for the fluoride-induced promotion of osteoblast differentiation as no significant increase in the collagen-1, osteocalcin, or BMP-2 mRNA levels was detected on the fluoride-modified ceramic TiO(2) surfaces apart from one group, which showed an elevated osteocalcin level and higher number of cells. Since the observed grain boundary corrosion is also anticipated to reduce the mechanical properties of ceramic TiO(2), this surface modification method may not be an ideal method for improving the osteogenic response of ceramic TiO(2) scaffolds.
Materials Science and Engineering: C | 2012
Hanna Tiainen; Georg Eder; Ola Nilsen; Håvard J. Haugen
This study aimed at the investigation of the effect of zirconium dioxide (ZrO2) addition on the mechanical properties of titanium dioxide (TiO2) bone scaffolds. The highly biocompatible TiO2 has been identified as a promising material for bone scaffolds, whereas the more bioinert ZrO2 is known for its excellent mechanical properties. Ultra-porous TiO2 scaffolds (>89% porosity) were produced using polymer sponge replication with 0-40 wt.% of the TiO2 raw material substituted with ZrO2. Microstructure, chemical composition, and pore architectural features of the prepared ceramic foams were characterised and related to their mechanical strength. Addition of 1 wt.% of ZrO2 led to 16% increase in the mean compressive strength without significant changes in the pore architectural parameters of TiO2 scaffolds. Further ZrO2 additions resulted in reduction of compressive strength in comparison to containing no ZrO2. The appearance of zirconium titanate (ZrTiO4) phase was found to hinder the densification of the ceramic material during sintering resulting in poor intergranular connections and thus significantly reducing the compressive strength of the highly porous ceramic foam scaffolds.
Journal of Materials Chemistry B | 2016
Mariana Ionita; Livia Elena Crica; Hanna Tiainen; Håvard J. Haugen; Eugeniu Vasile; Sorina Dinescu; Marieta Costache; Horia Iovu
The present work aims to develop new biocomposites based on gelatin (Gel) and poly(vinyl alcohol) (PVA) reinforced with graphene oxide (GO). On the one hand, the model is designed with consideration of the high performance of the aforementioned biopolymers as biomaterials; on the other hand, the original component of the system, GO, is expected to improve structural stability and boost mechanical strength. Porous Gel-PVA/GO materials with GO content ranging from 0.5 to 3 wt% are obtained by freeze-drying. Structural analysis by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the ability of well-dispersed GO nanosheets to form interactions with the polymers, leading to a unique molecular structuration. 3D analysis by X-ray microtomography (microCT) and scanning electron microscopy (SEM) suggests that GO has an influence on pore adjustment. According to mechanical tests, GO undoubtedly exhibits a beneficial effect on the polymer resistance against compressive stress, improving their compressive strengths by 97-100% with the addition of 0.5-3 wt% GO. Moreover, biological assessment using the MC3T3-E1 preosteoblast murine cell line indicated the fabrication of a cytocompatible composite formula, with potential for further in vivo testing and tissue engineering applications.
Langmuir | 2016
Sebastian Geißler; Alejandro Barrantes; Pentti Tengvall; Phillip B. Messersmith; Hanna Tiainen
Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions.
American Journal of Orthodontics and Dentofacial Orthopedics | 2012
Lino Torlakovic; Ingar Olsen; Christiane Petzold; Hanna Tiainen; Bjørn Øgaard
INTRODUCTION The aims of this study were to calculate the volume of white spot lesions by using microcomputed tomography and to determine which clinical attribute of the white spot lesion could better predict its volume: the clinically visible white spot lesion surface area or its color intensity. METHODS White spot lesions were induced in 8 patients in vivo on 23 healthy premolars destined for extraction during orthodontic treatment by using specially designed plaque-retaining orthodontic bands. After 7 weeks, the premolars were extracted. After extraction, the resulting white spot lesions were photographed and clinically graded. The teeth were analyzed with microcomputed tomography. RESULTS After 7 weeks, 70% of the teeth developed clinical white spot lesions. Clinically, the size of the lesions varied from minor to severe. Their volumes varied from 0 to 1.2931 mm(3). The traditional grades for white spot lesions correlated significantly with color intensity. A significant correlation was found between white spot lesion color intensity and lesion volume. This correlation was found to be better than that between the white spot lesion clinical score and lesion volume. CONCLUSIONS Our results indicate that white spot lesion color intensity might predict the depth of enamel demineralization as well as or better than traditional white spot lesion scoring. Therefore, the dentist could use this information when planning treatment for white spot lesions.
Journal of Tissue Engineering | 2015
Helen Pullisaar; Anders Verket; Krisztina Szöke; Hanna Tiainen; Håvard J. Haugen; Jan E. Brinchmann; Janne E. Reseland; Esben Østrup
The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue–derived mesenchymal stem cells from various donors on titanium dioxide (TiO2) scaffolds coated with an alginate hydrogel enriched with enamel matrix derivative. Cells were harvested for quantitative reverse transcription polymerase chain reaction on days 14 and 21, and medium was collected on days 2, 14, and 21 for protein analyses. Neither coating with alginate hydrogel nor alginate hydrogel enriched with enamel matrix derivative induced a cytotoxic response. Enamel matrix derivative–enriched alginate hydrogel significantly increased the expression of osteoblast markers COL1A1, TNFRSF11B, and BGLAP and secretion of osteopontin in human osteoblasts, whereas osteogenic differentiation of human adipose tissue–derived mesenchymal stem cells seemed unaffected by enamel matrix derivative. The alginate hydrogel coating procedure may have potential for local delivery of enamel matrix derivative and other stimulatory factors for use in bone tissue engineering.