Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah Cox is active.

Publication


Featured researches published by Hannah Cox.


PLOS ONE | 2012

An X Chromosome Association Scan of the Norfolk Island Genetic Isolate Provides Evidence for a Novel Migraine Susceptibility Locus at Xq12

Bridget H. Maher; Rodney Arthur Lea; Miles C. Benton; Hannah Cox; Claire Bellis; Melanie A. Carless; Thomas D. Dyer; Joanne E. Curran; Jac Charlesworth; Julie E. Buring; Tobias Kurth; Daniel I. Chasman; Paul M. Ridker; Markus Schürks; John Blangero; Lyn R. Griffiths

Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci. An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1×10−5) ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92×10−4), whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65×10−4). Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women’s Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05). Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63×10−5) is located within the 5′UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.


BMC Research Notes | 2010

Analysis of the MTHFR C677T variant with migraine phenotypes

Annie Liu; Saras Menon; Natalie Jane Colson; Sharon Anne Quinlan; Hannah Cox; Madelyn Peterson; Thomas Tiang; Larisa M. Haupt; Rodney Arthur Lea; Lyn R. Griffiths

BackgroundThe methylenetetrahydrofolate reductase (MTHFR) gene variant C677T has been implicated as a genetic risk factor in migraine susceptibility, particularly in Migraine with Aura. Migraine, with and without aura (MA and MO) have many diagnostic characteristics in common. It is postulated that migraine symptomatic characteristics might themselves be influenced by MTHFR. Here we analysed the clinical profile, migraine symptoms, triggers and treatments of 267 migraineurs previously genotyped for the MTHFR C677T variant. The chi-square test was used to analyse all potential relationships between genotype and migraine clinical variables. Regression analyses were performed to assess the association of C677T with all migraine clinical variables after adjusting for gender.FindingsThe homozygous TT genotype was significantly associated with MA (P < 0.0001) and unilateral head pain (P = 0.002). While the CT genotype was significantly associated with physical activity discomfort (P < 0.001) and stress as a migraine trigger (P = 0.002). Females with the TT genotype were significantly associated with unilateral head pain (P < 0.001) and females with the CT genotype were significantly associated with nausea (P < 0.001), osmophobia (P = 0.002), and the use of natural remedy for migraine treatment (P = 0.003). Conversely, male migraineurs with the TT genotype experienced higher incidences of bilateral head pain (63% vs 34%) and were less likely to use a natural remedy as a migraine treatment compared to female migraineurs (5% vs 20%).ConclusionsMTHFR genotype is associated with specific clinical variables of migraine including unilateral head pain, physical activity discomfort and stress.


Heredity | 2008

Linkage disequilibrium analysis in the genetically isolated Norfolk Island population

Claire Bellis; Hannah Cox; Micky Ovcaric; Kimberly Nina Begley; Rodney Arthur Lea; Sharon Anne Quinlan; David Burgner; Simon Heath; John Blangero; Lyn R. Griffiths

Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning ∼11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5–11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5–11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes.


Neurogenetics | 2012

A genome-wide analysis of 'Bounty' descendants implicates several novel variants in migraine susceptibility.

Hannah Cox; Rod A. Lea; Claire Bellis; Melanie A. Carless; Thomas D. Dyer; Joanne E. Curran; Jac Charlesworth; Stuart MacGregor; Dale R. Nyholt; Daniel I. Chasman; Paul M. Ridker; Markus Schürks; John Blangero; Lyn R. Griffiths

Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12 % of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543–5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182–90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h2 = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10−6) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.


Headache | 2012

The Role of the MTHFR Gene in Migraine

Shani Stuart; Hannah Cox; Rodney Arthur Lea; Lyn R. Griffiths

Migraine is a common neurological disorder and is characterized by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia, and occasionally, visual sensory disturbances. A number of genes have been implicated in the pathogenesis of this disease, including genes involved in regulating the vascular system. Of particular importance are the methylenetetrahydrofolate reductase (MTHFR) gene and the role it plays in migraine with aura. Migraine with aura has previously been shown to have a significant comorbidity with stroke, making the vascular class of genes a priority for migraine studies. In this report, we outline the importance of the MTHFR gene in migraine and also discuss the use of a genetic isolate to investigate MTHFR genetic variants. From this study, 3 MTHFR single nucleotide polymorphisms showing association with migraine in the Norfolk Island population have been identified, thus reinforcing the potential role of MTHFR in migraine susceptibility. Further studies will continue to build a gene profile of variants involved in the complex disease migraine and improve understanding of the underlying genetic causes of this disorder.


Cephalalgia | 2011

Association of a Notch 3 gene polymorphism with migraine susceptibility

Saras Menon; Hannah Cox; Melissa Kuwahata; Sharon Anne Quinlan; J C MacMillan; Larisa M. Haupt; Rodney Arthur Lea; Lyn R. Griffiths

Introduction: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) shares common symptoms with migraine. Most CADASIL causative mutations occur in exons 3 and 4 of the Notch 3 gene. This study investigated the role of C381T (rs 3815188) and G684A (rs 1043994) single nucleotide polymorphisms (SNP) in exons 3 and 4, respectively, of the Notch 3 gene in migraine. Results: The first part of the study, in a population of 275 migraineurs and 275 control individuals, found a significant association between the C381T variant and migraine, specifically in migraine without aura (MO) sufferers. The G684A variant was also found to be significantly associated with migraine, specifically in migraine with aura (MA) sufferers. A follow-up study in 300 migraineurs and 300 control individuals did not show replicated association of the C381T variant with migraineurs. However, the G684A variant was again shown to be significantly associated with migraine, specifically with MA. Conclusion: Further investigation of the G684A variant and the Notch 3 gene is warranted to understand their role in migraine.


European Journal of Human Genetics | 2010

Legacy of mutiny on the Bounty: founder effect and admixture on Norfolk Island

Stuart Macgregor; Claire Bellis; Rod A. Lea; Hannah Cox; Thomas D. Dyer; John Blangero; Peter M. Visscher; Lyn R. Griffiths

The population of Norfolk Island, located off the eastern coast of Australia, possesses an unusual and fascinating history. Most present-day islanders are related to a small number of the ‘Bounty’ mutineer founders. These founders consisted of Caucasian males and Polynesian females and led to an admixed present-day population. By examining a single large pedigree of 5742 individuals, spanning >200 years, we analyzed the influence of admixture and founder effect on various cardiovascular disease (CVD)-related traits. On account of the relative isolation of the population, on average one-third of the genomes of present-day islanders (single large pedigree individuals) is derived from 17 initial founders. The proportion of Polynesian ancestry in the present-day individuals was found to significantly influence total triglycerides, body mass index, systolic blood pressure and diastolic blood pressure. For various cholesterol traits, the influence of ancestry was less marked but overall the direction of effect for all CVD-related traits was consistent with Polynesian ancestry conferring greater CVD risk. Marker-derived homozygosity was computed and agreed with measures of inbreeding derived from pedigree information. Founder effect (inbreeding and marker-derived homozygosity) significantly influenced height. In conclusion, both founder effect and extreme admixture have substantially influenced the genetic architecture of a variety of CVD-related traits in this population.


Gene | 2012

Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island.

Hannah Cox; Rodney Arthur Lea; Claire Bellis; Dale R. Nyholt; Thomas D. Dyer; Larisa M. Haupt; Jac Charlesworth; Elizabeth Matovinovic; John Blangero; Lyn R. Griffiths

Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.


Heredity | 2010

European and Polynesian admixture in the Norfolk Island population.

Bp McEvoy; Zhen Zhen Zhao; Stuart Macgregor; Claire Bellis; Rod A. Lea; Hannah Cox; Grant W. Montgomery; Lyn R. Griffiths; Peter M. Visscher

The Norfolk Island population in the South Pacific is primarily the product of recent admixture between a small number of British male and Polynesian female founders. We identified and genotyped 128 Ancestry Informative Markers (AIMs) spread across the autosomes, X/Y chromosomes and mitochondrial DNA genome, to explore and quantify the current levels of genetic admixture in the Norfolk Islanders. On the basis of autosomal AIMs, the population shows mean European and Polynesian ancestry proportions of 88 and 12%, respectively. However, there is a substantial variation between individuals ranging from total European ancestry to near total Polynesian origin. There is a strong correlation between individual genetic estimates of Polynesian ancestry and those derived from the extensive pedigree and genealogical records of Islanders. Also in line with historical accounts, there is a substantial asymmetry in the maternal and paternal origins of the Islanders with almost all Y-chromosomes of European origin whereas at least 25% of mtDNAs appear to have a Polynesian origin. Accurate knowledge of ancestry will be important in future attempts to use the Island population in admixture mapping approaches to find the genes that underlie differences in the risk to some diseases between Europeans and Polynesians.


Headache | 2013

Association of a GRIA3 Gene Polymorphism With Migraine in an Australian Case-Control Cohort

Bridget H. Maher; Rodney Arthur Lea; Jordan Gary Follett; Hannah Cox; Francesca Fernandez; Teresa Esposito; Fernando Gianfrancesco; Larisa M. Haupt; Lyn R. Griffiths

The excitatory neurotransmitter glutamate has been implicated in both the hyperexcitability required for cortical spreading depression as well as activation of the trigeminovascular system required for the allodynia associated with migraine. Polymorphisms in the glutamate receptor ionotropic amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionin acid 1 (GRIA1) and GRIA3 genes that code for 2 of 4 subunits of the glutamate receptor have been previously associated with migraine in an Italian population. In addition, the GRIA3 gene is coded within a previously identified migraine susceptibility locus at Xq24. This study investigated the previously associated polymorphisms in both genes in an Australian case‐control population.

Collaboration


Dive into the Hannah Cox's collaboration.

Top Co-Authors

Avatar

Lyn R. Griffiths

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claire Bellis

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rod A. Lea

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

John Blangero

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rodney Arthur Lea

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Dyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larisa M. Haupt

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dale R. Nyholt

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge