Hannah Hochgerner
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hannah Hochgerner.
Nature Immunology | 2016
Tobias Goldmann; Peter Wieghofer; Marta Joana Costa Jordão; Fabiola Prutek; Nora Hagemeyer; Kathrin Frenzel; Lukas Amann; Ori Staszewski; Katrin Kierdorf; Martin Krueger; Giuseppe Locatelli; Hannah Hochgerner; Robert Zeiser; Slava Epelman; Frederic Geissmann; Josef Priller; Fabio Rossi; Ingo Bechmann; Martin Kerschensteiner; Sten Linnarsson; Steffen Jung; Marco Prinz
Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required.
Science | 2016
Sueli Marques; Amit Zeisel; Simone Codeluppi; David van Bruggen; Ana Mendanha Falcão; Lin Xiao; Huiliang Li; Martin Häring; Hannah Hochgerner; Roman A. Romanov; Daniel Gyllborg; Ana B. Muñoz-Manchado; Gioele La Manno; Peter Lönnerberg; Elisa M. Floriddia; Fatemah Rezayee; Patrik Ernfors; Ernest Arenas; Jens Hjerling-Leffler; Tibor Harkany; William D. Richardson; Sten Linnarsson; Gonçalo Castelo-Branco
One size does not fit all Oligodendrocytes are best known for their ability to myelinate brain neurons, thus increasing the speed of signal transmission. Marques et al. surveyed oligodendrocytes of developing mice and found unexpected heterogeneity. Transcriptional analysis identified 12 populations, ranging from precursors to mature oligodendrocytes. Transcriptional profiles diverged as the oligodendrocytes matured, building distinct populations. One population was responsive to motor learning, and another, with a different transcriptome, traveled along blood vessels. Science, this issue p. 1326 Brain oligodendrocytes express transcriptional heterogeneity between brain regions and age of development. Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra+ oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.
Nature Neuroscience | 2016
Alessandro Furlan; Gioele La Manno; Moritz Lübke; Martin Häring; Hind Abdo; Hannah Hochgerner; Jussi Kupari; Dmitry Usoskin; Matti S. Airaksinen; Guillermo Oliver; Sten Linnarsson; Patrik Ernfors
Despite the variety of physiological and target-related functions, little is known regarding the cellular complexity in the sympathetic ganglion. We explored the heterogeneity of mouse stellate and thoracic ganglia and found an unexpected variety of cell types. We identified specialized populations of nipple- and pilo-erector muscle neurons. These neurons extended axonal projections and were born among other neurons during embryogenesis, but remained unspecialized until target organogenesis occurred postnatally. Target innervation and cell-type specification was coordinated by an intricate acquisition of unique combinations of growth factor receptors and the initiation of expression of concomitant ligands by the nascent erector muscles. Overall, our results provide compelling evidence for a highly sophisticated organization of the sympathetic nervous system into discrete outflow channels that project to well-defined target tissues and offer mechanistic insight into how diversity and connectivity are established during development.
Nature | 2018
Gioele La Manno; Ruslan A. Soldatov; Amit Zeisel; Emelie Braun; Hannah Hochgerner; Katja Lidschreiber; Maria Eleni Kastriti; Peter Lönnerberg; Alessandro Furlan; Jean Fan; Lars E. Borm; Zehua Liu; David van Bruggen; Jimin Guo; Xiaoling He; Roger A. Barker; Erik Sundström; Gonçalo Castelo-Branco; Patrick Cramer; Igor Adameyko; Sten Linnarsson; Peter V. Kharchenko
RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity—the time derivative of the gene expression state—can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.RNA velocity, estimated in single cells by comparison of spliced and unspliced mRNA, is a good indicator of transcriptome dynamics and will provide a useful tool for analysis of developmental lineage.
PLOS ONE | 2013
Pawel Zajac; Saiful Islam; Hannah Hochgerner; Peter Lönnerberg; Sten Linnarsson
Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells.
Nature Neuroscience | 2018
Hannah Hochgerner; Amit Zeisel; Peter Lönnerberg; Sten Linnarsson
The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.Using single-cell RNA-seq, the authors show that early developmental neurogenesis in the dentate gyrus of the hippocampus is largely conserved in the adult, but with a perinatal transformation of stem cells to an adult type.
Cell | 2018
Amit Zeisel; Hannah Hochgerner; Peter Lönnerberg; Anna Johnsson; Fatima Memic; Job van der Zwan; Martin Häring; Emelie Braun; Lars E. Borm; Gioele La Manno; Simone Codeluppi; Alessandro Furlan; Kawai Lee; Nathan Skene; Kenneth D. Harris; Jens Hjerling-Leffler; Ernest Arenas; Patrik Ernfors; Ulrika Marklund; Sten Linnarsson
Summary The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
Scientific Reports | 2017
Hannah Hochgerner; Peter Lönnerberg; Rebecca Hodge; Jaromir Mikes; Hermann Hubschle; Philip Lin; Simone Picelli; Gioele La Manno; Michael Ratz; Jude Dunne; Syed S. Husain; Ed Lein; Maithreyan Srinivasan; Amit Zeisel; Sten Linnarsson
Single-cell RNA-seq has become routine for discovering cell types and revealing cellular diversity, but archived human brain samples still pose a challenge to current high-throughput platforms. We present STRT-seq-2i, an addressable 9600-microwell array platform, combining sampling by limiting dilution or FACS, with imaging and high throughput at competitive cost. We applied the platform to fresh single mouse cortical cells and to frozen post-mortem human cortical nuclei, matching the performance of a previous lower-throughput platform while retaining a high degree of flexibility, potentially also for other high-throughput applications.
PLOS Biology | 2018
Kenneth D. Harris; Hannah Hochgerner; Nathan Skene; Lorenza Magno; Linda Katona; Carolina Bengtsson Gonzales; Peter Somogyi; Nicoletta Kessaris; Sten Linnarsson; Jens Hjerling-Leffler
Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.
Nature Neuroscience | 2018
Martin Häring; Amit Zeisel; Hannah Hochgerner; Puneet Rinwa; Jon E. T. Jakobsson; Peter Lönnerberg; Gioele La Manno; Nilesh Sharma; Lotta Borgius; Ole Kiehn; Malin C. Lagerström; Sten Linnarsson; Patrik Ernfors
The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.Using single-cell RNA-seq, the authors produced a comprehensive atlas of the somatosensory spinal cord. They found that neuron types build the dorsal horn by a discrete layering and to be differentially engaged by noxious heat and cold.