Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah L. Dewerchin is active.

Publication


Featured researches published by Hannah L. Dewerchin.


Archives of Virology | 2005

Replication of feline coronaviruses in peripheral blood monocytes

Hannah L. Dewerchin; Els Cornelissen; Hans Nauwynck

Summary.Feline infectious peritonitis virus (FIPV) (Coronaviridae) causes the most lethal viral infection in cats: FIP. The related feline enteric coronavirus (FECV) causes mild enteritis. Why these feline coronaviruses manifest so differently in vivo is not known. In this study, infection kinetics (titres and antigen expression) of FIPV 79-1146, and FECV 79-1683, were determined in peripheral blood monocytes from 3 donor cats and compared to those in Crandell feline kidney (CrFK) cells. The infection kinetics in monocytes were host dependent. Monocytes from 1 cat were resistant to both FIPV- and FECV-infection. Monocytes from the other 2 cats could initially be infected by both FIPV and FECV but FIPV infection was sustained in monocytes of only one cat. FECV-infection was never sustained and viral production was up to 100 times lower than in FIPV-infected monocytes. In CrFK cells, FIPV and FECV infection kinetics did not differ. In monocytes of a larger cat population (n = 19) the 3 infection patterns were also found. Considering all 22 investigated cats, 3/22 were not susceptible for FIPV and FECV. The rest could be infected with FECV and FIPV but 10/22 cats had monocytes that only sustained FIPV infection and 9/22 sustained neither FIPV nor FECV infection.


Journal of General Virology | 2008

Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin

Evelien Van Hamme; Hannah L. Dewerchin; Els Cornelissen; Bruno Verhasselt; Hans Nauwynck

Feline infectious peritonitis virus (FIPV), a coronavirus that causes a lethal chronic disease in cats, enters feline monocytes via endocytosis. In this study, the pathway of internalization is characterized by evaluating the effect of chemical inhibitors and/or expression of dominant-negative (DN) proteins on the percentage of internalized virions per cell and infection. Further, co-localization studies were performed to determine the involvement of certain cellular internalization proteins. FIPV is not internalized through a clathrin-mediated pathway, as chlorpromazine, amantadine and DN eps15 did not influence virus uptake and FIPV did not co-localize with clathrin. The caveolae-mediated pathway could be excluded based on the inability of genistein and DN caveolin-1 to inhibit virus uptake and lack of co-localization between FIPV and caveolin-1. Dynamin inhibitory peptide and DN dynamin effectively inhibited virus internalization. The inhibitor strongly reduced uptake to 20.3+/-1.1% of uptake in untreated cells. In the presence of DN dynamin, uptake was 58.7+/-3.9% relative to uptake in untransduced cells. Internalization of FIPV was slightly reduced to 85.0+/-1.4 and 87.4+/-6.1% of internalization in control cells by the sterol-binding drugs nystatin and methyl-beta-cyclodextrin, respectively. Rho GTPases were inhibited by Clostridium difficile toxin B, but no effect was observed. These results were confirmed with infection studies showing that infection was not influenced by chlorpromazine, amantadine and genistein, but was significantly reduced by dynamin inhibition and nystatin. In conclusion, these results indicate that FIPV enters monocytes through a clathrin- and caveolae-independent pathway that strongly depends on dynamin and is slightly sensitive to cholesterol depletion.


Virus Research | 2011

Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes.

Evelien Van Hamme; Lowiese Desmarets; Hannah L. Dewerchin; Hans Nauwynck

Abstract Two potential receptors have been described for the feline infectious peritonitis virus (FIPV): feline aminopeptidase N (fAPN) and feline dendritic cell-specific intercellular adhesion molecule grabbing non-integrin (fDC-SIGN). In cell lines, fAPN serves as a receptor for serotype II, but not for serotype I FIPV. The role of fAPN in infection of in vivo target cells, monocytes, is not yet confirmed. Both serotype I and II FIPVs use fDC-SIGN for infection of monocyte-derived cells but how is not known. In this study, the role of fAPN and fDC-SIGN was studied at different stages in FIPV infection of monocytes. First, the effects of blocking the potential receptor(s) were studied for the processes of attachment and infection. Secondly, the level of co-localization of FIPV and the receptors was determined. It was found that FIPV I binding and infection were not affected by blocking fAPN while blocking fDC-SIGN reduced FIPV I binding to 36% and practically completely inhibited infection. Accordingly, 66% of bound FIPV I particles co-localized with fDC-SIGN. Blocking fAPN reduced FIPV II binding by 53% and infection by 80%. Further, 60% of bound FIPV II co-localized with fAPN. fDC-SIGN was not involved in FIPV II binding but infection was reduced with 64% when fDC-SIGN was blocked. In conclusion, FIPV I infection of monocytes depends on fDC-SIGN. Most FIPV I particles already interact with fDC-SIGN at the plasma membrane. For FIPV II, both fAPN and fDC-SIGN are involved in infection with only fAPN playing a receptor role at the plasma membrane.


Journal of General Virology | 2008

Surface-expressed viral proteins in feline infectious peritonitis virus-infected monocytes are internalized through a clathrin- and caveolae-independent pathway.

Hannah L. Dewerchin; Els Cornelissen; Evelien Van Hamme; Kaatje Smits; Bruno Verhasselt; Hans Nauwynck

Infection with feline infectious peritonitis virus (FIPV), a feline coronavirus, frequently leads to death in spite of a strong humoral immune response. In previous work, we reported that infected monocytes, the in vivo target cells of FIPV, express viral proteins in their plasma membranes. These proteins are quickly internalized upon binding of antibodies. As the cell surface is cleared from viral proteins, internalization might offer protection against antibody-dependent cell lysis. Here, the internalization and subsequent trafficking of the antigen-antibody complexes were characterized using biochemical, cell biological and genetic approaches. Internalization occurred through a clathrin- and caveolae-independent pathway that did not require dynamin, rafts, actin or rho-GTPases. These findings indicate that the viral antigen-antibody complexes were not internalized through any of the previously described pathways. Further characterization showed that this internalization process was independent from phosphatases and tyrosine kinases but did depend on serine/threonine kinases. After internalization, the viral antigen-antibody complexes passed through the early endosomes, where they resided only briefly, and accumulated in the late endosomes. Between 30 and 60 min after antibody addition, the complexes left the late endosomes but were not degraded in the lysosomes. This study reveals what is probably a new internalization pathway into primary monocytes, confirming once more the complexity of endocytic processes.


Veterinary Microbiology | 2007

Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP

Els Cornelissen; Hannah L. Dewerchin; E. Van Hamme; Hans Nauwynck

Abstract Feline infectious peritonitis virus (FIPV) positive cells are present in pyogranulomas and exudates from cats with FIP. These cells belong mainly to the monocyte/macrophage lineage. How these cells survive in immune cats is not known. In this study, FIPV positive cells were isolated from pyogranulomas and exudates of 12 naturally FIPV-infected cats and the presence of two immunologic targets, viral antigens and MHC I, on their surface was determined. The majority of the infected cells were confirmed to be cells from the monocyte/macrophage lineage. No surface expression of viral antigens was detected on FIPV positive cells. MHC I molecules were present on all the FIPV positive cells. After cultivation of the isolated infected cells, 52±10% of the infected cells re-expressed viral antigens on the plasma membrane. In conclusion, it can be stated that in FIP cats, FIPV replicates in cells of the monocyte/macrophage lineage without carrying viral antigens in their plasma membrane, which could allow them to escape from antibody-dependent cell lysis.


Veterinary Microbiology | 2013

The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes.

Annelike Dedeurwaerder; Lowiese Desmarets; Dominique Olyslaegers; Ben Vermeulen; Hannah L. Dewerchin; Hans Nauwynck

Abstract The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs.


Veterinary Microbiology | 2013

Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

Ben Vermeulen; Bert Devriendt; Dominique Olyslaegers; Annelike Dedeurwaerder; Lowiese Desmarets; Herman Favoreel; Hannah L. Dewerchin; Hans Nauwynck

Abstract A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25−Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection.


BMC Veterinary Research | 2013

Generation and characterization of feline arterial and venous endothelial cell lines for the study of the vascular endothelium

Dominique Olyslaegers; Lowiese Desmarets; Annelike Dedeurwaerder; Hannah L. Dewerchin; Hans Nauwynck

BackgroundThe in vitro culture of endothelial cells (ECs) is an indispensable tool for studying the role of the endothelium in physical and pathological conditions. Primary ECs, however, have a restricted proliferative lifespan which hampers their use in long-term studies. The need for standardized experimental conditions to obtain relevant and reproducible results has increased the demand for well-characterized, continuous EC lines that retain the phenotypic and functional characteristics of their non-transformed counterparts.ResultsPrimary feline ECs from aorta and vena cava were successfully immortalized through the successive introduction of simian virus 40 large T (SV40LT) antigen and the catalytic subunit of human telomerase (hTERT). In contrast to the parental ECs, the transformed cells were able to proliferate continuously in culture. Established cell lines exhibited several inherent endothelial properties, including typical cobblestone morphology, binding of endothelial cell-specific lectins and internalization of acetylated low-density lipoprotein. In addition, the immortalization did not affect the functional phenotype as demonstrated by their capacity to rapidly form cord-like structures on matrigel and to express cell adhesion molecules following cytokine stimulation.ConclusionThe ability to immortalize feline ECs, and the fact that these cells maintain the EC phenotype will enable a greater understanding of fundamental mechanisms of EC biology and endothelial-related diseases. Furthermore, the use of cell lines is an effective implementation of the 3-R principles formulated by Russel and Burch.


Virus Research | 2009

Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells

Els Cornelissen; Hannah L. Dewerchin; E. Van Hamme; Hans Nauwynck

Abstract Cats infected with virulent feline coronavirus which causes feline infectious peritonitis (FIP) usually succumb to disease despite high antibody concentrations. One of the mechanisms that can help resolving infection is antibody-dependent, complement-mediated lysis (ADCML) of infected cells. ADCML consists of virus-specific antibodies that bind to cell surface expressed viral proteins which result in complement activation and cell lysis. The objective of this study was to determine the sensitivity of FIP-virus (FIPV) infected cells towards ADCML and to examine the role of the accessory proteins 3abc and 7ab in this process. ADCML assays, using FIPV strain 79-1146 and its deletion mutant strain Δ3abc/Δ7ab, were performed on: (i) CrFK cells that show surface-expressed viral antigens, (ii) monocytes without surface-expressed viral proteins due to retention and (iii) monocytes with surface-expressed viral proteins since the antibody-mediated internalization of these proteins was blocked. As expected, no ADCML was detected of the monocytes without surface-expressed viral antigens. Surprisingly, no lysis was observed in the CrFK cells and the monocytes that do show surface-expressed viral proteins, while controls showed that the ADCML assay was functional. These experiments proof that FIPV can employ another immune evasion strategy against ADCML (besides preventing surface expression): the inhibition of complement-mediated lysis. This new evasion strategy is not attributed to the group-specific proteins since lysis of cells infected with FIPV Δ3abc/Δ7ab was not detected.


Veterinary Immunology and Immunopathology | 2012

In vitro assessment of the feline cell-mediated immune response against feline panleukopeniavirus, calicivirus and felid herpesvirus 1 using 5-bromo-2′-deoxyuridine labeling

Ben Vermeulen; Sabine Gleich; Annelike Dedeurwaerder; Dominique Olyslaegers; Lowiese Desmarets; Hannah L. Dewerchin; Hans Nauwynck

Abstract In this study an in vitro assay was optimized to detect feline proliferating lymphocytes as an assessment for the cell-mediated immune response. For this purpose, 5-bromo-2′-deoxyuridine (BrdU) labeling was chosen because of its sensitivity and the possibility of further characterization of proliferating cells. The assay was optimized by selecting the best batch and concentration of fetal bovine serum, β-mercaptoethanol concentration, cell density, BrdU incubation time and antigen presenting cell type. Cats were vaccinated with the attenuated Nobivac vaccine Tricat and the peripheral blood lymphocyte proliferation responses were quantified upon in vitro restimulation with inactivated and infectious feline panleukopenia virus (FPV), feline calicivirus (FCV) and felid herpesvirus 1 (FeHV-1). Proliferation signals were detected with inactivated FeHV-1 in the CD8+ but not in the CD8− T lymphocyte population, with inactivated FCV and FPV in both CD8− and CD8+ T lymphocyte populations. Restimulation with infectious FCV caused significant proliferation in the CD8− T lymphocyte population only while infectious FPV and FeHV-1 seemed to suppress lymphocyte proliferation in both T cell populations. Additional IFN-γ quantification in the culture supernatant revealed a large correlation between the proliferation signals and IFN-γ production, indicating that BrdU labeling is a very reliable technique to assess and characterize feline lymphoproliferative responses to viral antigens in vitro.

Collaboration


Dive into the Hannah L. Dewerchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge