Evelien Van Hamme
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evelien Van Hamme.
European Heart Journal | 2013
Jolanda van Hengel; Martina Calore; Barbara Bauce; Emanuela Dazzo; Elisa Mazzotti; Marzia De Bortoli; Alessandra Lorenzon; Ilena E.A. Li Mura; Giorgia Beffagna; Ilaria Rigato; Mara Vleeschouwers; Koen Tyberghein; Paco Hulpiau; Evelien Van Hamme; Tania Zaglia; Domenico Corrado; Cristina Basso; Gaetano Thiene; Luciano Daliento; Andrea Nava; Frans van Roy; Alessandra Rampazzo
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a major cause of juvenile sudden death and is characterized by fibro-fatty replacement of the right ventricle. Mutations in several genes encoding desmosomal proteins have been identified in ARVC. We speculated that αT-catenin, encoded by CTNNA3, might also carry mutations in ARVC patients. Alpha-T-catenin binds plakophilins and this binding contributes to the formation of the area composita, which strengthens cell-cell adhesion in contractile cardiomyocytes. METHODS AND RESULTS We used denaturing high-performance liquid chromatography and direct sequencing to screen CTNNA3 in 76 ARVC patients who did not carry any mutations in the desmosomal genes commonly mutated in ARVC. Mutations c.281T > A (p.V94D) and c.2293_2295delTTG (p.del765L) were identified in two probands. They are located in important domains of αT-catenin. Yeast two-hybrid and cell transfection studies showed that the interaction between the p.V94D mutant protein and β-catenin was affected, whereas the p.del765L mutant protein showed a much stronger dimerization potential and formed aggresomes in HEK293T cells. CONCLUSION These findings might point to a causal relationship between CTNNA3 mutations and ARVC. This first report on the involvement of an area composita gene in ARVC shows that the pathogenesis of this disease extends beyond desmosomes. Since the frequency of CTNNA3 mutations in ARVC patients is not rare, systematic screening for this gene should be considered to improve the clinical management of ARVC families.
Journal of General Virology | 2008
Evelien Van Hamme; Hannah L. Dewerchin; Els Cornelissen; Bruno Verhasselt; Hans Nauwynck
Feline infectious peritonitis virus (FIPV), a coronavirus that causes a lethal chronic disease in cats, enters feline monocytes via endocytosis. In this study, the pathway of internalization is characterized by evaluating the effect of chemical inhibitors and/or expression of dominant-negative (DN) proteins on the percentage of internalized virions per cell and infection. Further, co-localization studies were performed to determine the involvement of certain cellular internalization proteins. FIPV is not internalized through a clathrin-mediated pathway, as chlorpromazine, amantadine and DN eps15 did not influence virus uptake and FIPV did not co-localize with clathrin. The caveolae-mediated pathway could be excluded based on the inability of genistein and DN caveolin-1 to inhibit virus uptake and lack of co-localization between FIPV and caveolin-1. Dynamin inhibitory peptide and DN dynamin effectively inhibited virus internalization. The inhibitor strongly reduced uptake to 20.3+/-1.1% of uptake in untreated cells. In the presence of DN dynamin, uptake was 58.7+/-3.9% relative to uptake in untransduced cells. Internalization of FIPV was slightly reduced to 85.0+/-1.4 and 87.4+/-6.1% of internalization in control cells by the sterol-binding drugs nystatin and methyl-beta-cyclodextrin, respectively. Rho GTPases were inhibited by Clostridium difficile toxin B, but no effect was observed. These results were confirmed with infection studies showing that infection was not influenced by chlorpromazine, amantadine and genistein, but was significantly reduced by dynamin inhibition and nystatin. In conclusion, these results indicate that FIPV enters monocytes through a clathrin- and caveolae-independent pathway that strongly depends on dynamin and is slightly sensitive to cholesterol depletion.
Journal of Virology | 2015
Ki Joon Cho; Bert Schepens; Jong Hyeon Seok; Sella Kim; Kenny Roose; Ji-Hye Lee; Rodrigo Gallardo; Evelien Van Hamme; Joost Schymkowitz; Frederic Rousseau; Walter Fiers; Xavier Saelens; Kyung Hyun Kim
ABSTRACT The extracellular domain of influenza A virus matrix protein 2 (M2e) is conserved and is being evaluated as a quasiuniversal influenza A vaccine candidate. We describe the crystal structure at 1.6 Å resolution of M2e in complex with the Fab fragment of an M2e-specific monoclonal antibody that protects against influenza A virus challenge. This antibody binds M2 expressed on the surfaces of cells infected with influenza A virus. Five out of six complementary determining regions interact with M2e, and three highly conserved M2e residues are critical for this interaction. In this complex, M2e adopts a compact U-shaped conformation stabilized in the center by the highly conserved tryptophan residue in M2e. This is the first description of the three-dimensional structure of M2e. IMPORTANCE M2e of influenza A is under investigation as a universal influenza A vaccine, but its three-dimensional structure is unknown. We describe the structure of M2e stabilized with an M2e-specific monoclonal antibody that recognizes natural M2. We found that the conserved tryptophan is positioned in the center of the U-shaped structure of M2e and stabilizes its conformation. The structure also explains why previously reported in vivo escape viruses, selected with a similar monoclonal antibody, carried proline residue substitutions at position 10 in M2.
Virus Research | 2011
Evelien Van Hamme; Lowiese Desmarets; Hannah L. Dewerchin; Hans Nauwynck
Abstract Two potential receptors have been described for the feline infectious peritonitis virus (FIPV): feline aminopeptidase N (fAPN) and feline dendritic cell-specific intercellular adhesion molecule grabbing non-integrin (fDC-SIGN). In cell lines, fAPN serves as a receptor for serotype II, but not for serotype I FIPV. The role of fAPN in infection of in vivo target cells, monocytes, is not yet confirmed. Both serotype I and II FIPVs use fDC-SIGN for infection of monocyte-derived cells but how is not known. In this study, the role of fAPN and fDC-SIGN was studied at different stages in FIPV infection of monocytes. First, the effects of blocking the potential receptor(s) were studied for the processes of attachment and infection. Secondly, the level of co-localization of FIPV and the receptors was determined. It was found that FIPV I binding and infection were not affected by blocking fAPN while blocking fDC-SIGN reduced FIPV I binding to 36% and practically completely inhibited infection. Accordingly, 66% of bound FIPV I particles co-localized with fDC-SIGN. Blocking fAPN reduced FIPV II binding by 53% and infection by 80%. Further, 60% of bound FIPV II co-localized with fAPN. fDC-SIGN was not involved in FIPV II binding but infection was reduced with 64% when fDC-SIGN was blocked. In conclusion, FIPV I infection of monocytes depends on fDC-SIGN. Most FIPV I particles already interact with fDC-SIGN at the plasma membrane. For FIPV II, both fAPN and fDC-SIGN are involved in infection with only fAPN playing a receptor role at the plasma membrane.
Journal of General Virology | 2008
Hannah L. Dewerchin; Els Cornelissen; Evelien Van Hamme; Kaatje Smits; Bruno Verhasselt; Hans Nauwynck
Infection with feline infectious peritonitis virus (FIPV), a feline coronavirus, frequently leads to death in spite of a strong humoral immune response. In previous work, we reported that infected monocytes, the in vivo target cells of FIPV, express viral proteins in their plasma membranes. These proteins are quickly internalized upon binding of antibodies. As the cell surface is cleared from viral proteins, internalization might offer protection against antibody-dependent cell lysis. Here, the internalization and subsequent trafficking of the antigen-antibody complexes were characterized using biochemical, cell biological and genetic approaches. Internalization occurred through a clathrin- and caveolae-independent pathway that did not require dynamin, rafts, actin or rho-GTPases. These findings indicate that the viral antigen-antibody complexes were not internalized through any of the previously described pathways. Further characterization showed that this internalization process was independent from phosphatases and tyrosine kinases but did depend on serine/threonine kinases. After internalization, the viral antigen-antibody complexes passed through the early endosomes, where they resided only briefly, and accumulated in the late endosomes. Between 30 and 60 min after antibody addition, the complexes left the late endosomes but were not degraded in the lysosomes. This study reveals what is probably a new internalization pathway into primary monocytes, confirming once more the complexity of endocytic processes.
Cellular Signalling | 2015
Dinesh Babu; Georges Leclercq; Vera Goossens; Tom Vanden Berghe; Evelien Van Hamme; Peter Vandenabeele; Romain Lefebvre
TNF-α/cycloheximide (CHX)-induced apoptosis of the mouse intestinal epithelial cell line MODE-K corresponds with the production of reactive oxygen species (ROS). The aim of the study is to investigate the sources of ROS production contributing to apoptotic cell death during TNF-α/CHX-induced oxidative stress in MODE-K cells. Total ROS or mitochondrial superoxide anion production was measured simultaneously with cell death in the absence or presence of pharmacological inhibitors of various ROS-producing systems, and of ROS scavengers/antioxidants. The influence of TNF-α/CHX on mitochondrial membrane potential (Ψ(m)) and cellular oxygen consumption was also studied. TNF-α/CHX time-dependently increased intracellular total ROS and mitochondrial superoxide anion production in MODE-K cells, starting from 2h. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) by a pan-NOX inhibitor (VAS-2870) and a specific inhibitor of Rac1 (NSC23766) significantly reduced TNF-α/CHX-induced total ROS and cell death levels. The mitochondrial electron transport chain inhibitors, amytal (IQ site of complex I) and TTFA (Qp site of complex II) showed a pronounced decrease in TNF-α/CHX-induced total ROS, mitochondrial superoxide anion and cell death levels. TNF-α/CHX treatment caused an immediate decrease in mitochondrial respiration, and a loss of Ψ(m) and increase in mitochondrial dysfunction from 1 h on. The results suggest that mitochondria and NOX are the two major sources of ROS overproduction during TNF-α/CHX-induced cell death in MODE-K cells, with superoxide anions being the major ROS species. Particularly, the quinone-binding sites of mitochondrial complex I (site I(Q)) and complex II (site Qp) seem to be the major sites of mitochondrial ROS production.
PLOS ONE | 2013
Valerie Vanhooren; Roosmarijn E. Vandenbroucke; Sylviane Dewaele; Evelien Van Hamme; Jody J. Haigh; Tino Hochepied; Claude Libert
Glycosylation is an essential post-translational modification, which determines the function of proteins and important processes such as inflammation. β-1,4-galactosyltransferase I (βGalT1) is a key enzyme involved in the addition of galactose moieties to glycoproteins. Intestinal mucins are glycoproteins that protect the gut barrier against invading pathogens and determine the composition of the intestinal microbiota. Proper glycosylation of mucus is important in this regard. By using ubiquitously expressing βGalT1 transgenic mice, we found that this enzyme led to strong galactosylation of mucus proteins, isolated from the gut of mice. This galactosylation was associated with a drastic change in composition of gut microbiota, as TG mice had a significantly higher Firmicutes to Bacteroidetes ratio. TG mice were strongly protected against TNF-induced systemic inflammation and lethality. Moreover, βGalT1 transgenic mice were protected in a model of DSS-induced colitis, at the level of clinical score, loss of body weight, colon length and gut permeability. These studies put βGalT1 forward as an essential protective player in exacerbated intestinal inflammation. Optimal galactosylation of N-glycans of mucus proteins, determining the bacterial composition of the gut, is a likely mechanism of this function.
BMC Physiology | 2014
Benjamin Vandendriessche; An Goethals; Alba Simats; Evelien Van Hamme; Peter Brouckaert; Anje Cauwels
BackgroundMAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases.ResultsWe show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis.ConclusionsThe capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.
Journal of Controlled Release | 2017
Lei Deng; Kenny Roose; Emma R. Job; Riet De Rycke; Evelien Van Hamme; Amanda Gonçalves; Eef Parthoens; Laetitia Cicchelero; Niek N. Sanders; Walter Fiers; Xavier Saelens
&NA; We describe a novel live oral vaccine type. Conceptually, this vaccine is based on a non‐lytic, recombinant filamentous bacteriophage that displays an antigen of interest. To provide proof of concept we used the amino‐terminal part of a conserved influenza A virus epitope, i.e. matrix protein 2 ectodomain (M2e) residues 2 to 16, as the antigen of interest. Rather than using the phages as purified virus‐like particles as a vaccine, these phages were delivered to intestinal Peyers patches as a live bacterium‐phage combination that comprises Escherichia coli cells that conditionally express invasin derived from Yersinia pseudotuberculosis. Invasin‐expressing E. coli cells were internalized by mammalian Hep‐2 cells in vitro and adhered to mouse intestinal microfold (M) cells ex vivo. Invasin‐expressing E. coli cells were permissive for recombinant filamentous bacteriophage f88 that displays M2e and became persistently infected. Oral administration of the live engineered E. coli‐invasin‐phage combination to mice induced M2e‐specific serum IgG antibodies. Mice that had been immunized with invasin‐expressing E. coli cells that carried M2e2‐16 displaying fd phages seroconverted to M2e and showed partial protection against challenge with influenza A virus. Oral delivery of a live vaccine comprising a bacterial host that is targeted to Peyers patches and is persistently infected with an antigen‐displaying phage, can thus be exploited as an oral vaccine. Graphical abstract Figure. No caption available.
Methods of Molecular Biology | 2016
Marie Lork; Mieke Delvaeye; Amanda Gonçalves; Evelien Van Hamme; Rudi Beyaert
Salmonella is a gram-negative facultative intracellular pathogen that is capable of infecting a variety of hosts. Inside host cells, most Salmonella bacteria reside and replicate within Salmonella-containing vacuoles. They use virulence proteins to manipulate the host cell machinery for their own benefit and hijack the host cytoskeleton to travel toward the perinuclear area. However, a fraction of bacteria escapes into the cytosol where they get decorated with a dense layer of polyubiquitin, which labels the bacteria for clearance by autophagy. More specifically, autophagy receptor proteins recognize the ubiquitinated bacteria and deliver them to autophagosomes, which subsequently fuse to lysosomes. Here, we describe methods used to infect HeLa cells with Salmonella bacteria and to detect their ubiquitination via immunofluorescence and laser scanning confocal microscopy.