Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah M. Jones is active.

Publication


Featured researches published by Hannah M. Jones.


The Journal of Clinical Pharmacology | 2009

Prediction of Human Pharmacokinetics From Preclinical Information: Comparative Accuracy of Quantitative Prediction Approaches

Natilie Hosea; Wendy Collard; Susan Cole; Tristan S. Maurer; Rick X. Fang; Hannah M. Jones; Shefali Kakar; Yasuhiro Nakai; Bill J. Smith; Rob Webster; Kevin Beaumont

Quantitative prediction of human pharmacokinetics is critical in assessing the viability of drug candidates and in determining first‐in‐human dosing. Numerous prediction methodologies, incorporating both in vitro and preclinical in vivo data, have been developed in recent years, each with advantages and disadvantages. However, the lack of a comprehensive data set, both preclinical and clinical, has limited efforts to evaluate the optimal strategy (or strategies) that results in quantitative predictions of human pharmacokinetics. To address this issue, the authors conducted a retrospective analysis using 50 proprietary compounds for which in vitro, preclinical pharmacokinetic data and oral single‐dose human pharmacokinetic data were available. Five predictive strategies, involving either allometry or use of unbound intrinsic clearance from microsomes or hepatocytes, were then compared for their ability to predict human oral clearance, half‐life through predictions of systemic clearance, volume of distribution, and bioavailability. Use of a single‐species scaling approach with rat, dog, or monkey was as accurate as or more accurate than using multiple‐species allometry. For those compounds cleared almost exclusively by P450‐mediated pathways, scaling from human liver microsomes was as predictive as single‐species scaling of clearance based on data from rat, dog, or monkey. These data suggest that use of predictive methods involving either single‐species in vivo data or in vitro human liver microsomes can quantitatively predict human in vivo pharmacokinetics and suggest the possibility of streamlining the predictive methodology through use of a single species or use only of human in vitro microsomal preparations.


Clinical Pharmacology & Therapeutics | 2015

Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective

Hannah M. Jones; Yuan Chen; Christopher R. Gibson; Tycho Heimbach; Neil Parrott; Sheila Annie Peters; Jan Snoeys; Vijay Upreti; Ming Zheng; Stephen Hall

The application of physiologically based pharmacokinetic (PBPK) modeling has developed rapidly within the pharmaceutical industry and is becoming an integral part of drug discovery and development. In this study, we provide a cross pharmaceutical industry position on “how PBPK modeling can be applied in industry” focusing on the strategies for application of PBPK at different stages, an associated perspective on the confidence and challenges, as well as guidance on interacting with regulatory agencies and internal best practices.


Drug Metabolism and Disposition | 2012

Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data

Hannah M. Jones; Hugh A. Barton; Yurong Lai; Yi-an Bi; Emi Kimoto; Sarah Kempshall; Tate Sc; Ayman El-Kattan; J. B. Houston; Aleksandra Galetin; Katherine S. Fenner

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed.


Journal of Medicinal Chemistry | 2012

Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit.

Paul V. Fish; Panagis Filippakopoulos; Gerwyn Bish; Paul E. Brennan; Mark Edward Bunnage; Andrew Simon Cook; Oleg Federov; Brian S. Gerstenberger; Hannah M. Jones; Stefan Knapp; Brian D. Marsden; Karl H. Nocka; Dafydd R. Owen; Martin Philpott; Sarah Picaud; Michael J. Primiano; Michael Ralph; Nunzio Sciammetta; John David Trzupek

The posttranslational modification of chromatin through acetylation at selected histone lysine residues is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The significance of this subset of the epigenetic code is interrogated and interpreted by an acetyllysine-specific protein–protein interaction with bromodomain reader modules. Selective inhibition of the bromo and extra C-terminal domain (BET) family of bromodomains with a small molecule is feasible, and this may represent an opportunity for disease intervention through the recently disclosed antiproliferative and anti-inflammatory properties of such inhibitors. Herein, we describe the discovery and structure–activity relationship (SAR) of a novel, small-molecule chemical probe for BET family inhibition that was identified through the application of structure-based fragment assessment and optimization techniques. This has yielded a potent, selective compound with cell-based activity (PFI-1) that may further add to the understanding of BET family function within the bromodomains.


Aaps Journal | 2009

Modelling and PBPK Simulation in Drug Discovery

Hannah M. Jones; Iain Gardner; Kenny J. Watson

Physiologically based pharmacokinetic (PBPK) models are composed of a series of differential equations and have been implemented in a number of commercial software packages. These models require species-specific and compound-specific input parameters and allow for the prediction of plasma and tissue concentration time profiles after intravenous and oral administration of compounds to animals and humans. PBPK models allow the early integration of a wide variety of preclinical data into a mechanistic quantitative framework. Use of PBPK models allows the experimenter to gain insights into the properties of a compound, helps to guide experimental efforts at the early stages of drug discovery, and enables the prediction of human plasma concentration time profiles with minimal (and in some cases no) animal data. In this review, the application and limitations of PBPK techniques in drug discovery are discussed. Specific reference is made to its utility (1) at the lead development stage for the prioritization of compounds for animal PK studies and (2) at the clinical candidate selection and “first in human” stages for the prediction of human PK.


Journal of Pharmaceutical Sciences | 2011

PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration–time profiles in human by using the physiologically‐based pharmacokinetic modeling approach

Patrick Poulin; Rhys D.O. Jones; Hannah M. Jones; Christopher R. Gibson; Malcolm Rowland; Jenny Y. Chien; Barbara J. Ring; Kimberly K. Adkison; M. Sherry Ku; Handan He; Ragini Vuppugalla; Punit Marathe; Volker Fischer; Sandeep Dutta; Vikash Sinha; Thorir Björnsson; Thierry Lavé; James W.T. Yates

The objective of this study is to assess the effectiveness of physiologically based pharmacokinetic (PBPK) models for simulating human plasma concentration-time profiles for the unique drug dataset of blinded data that has been assembled as part of a Pharmaceutical Research and Manufacturers of America initiative. Combinations of absorption, distribution, and clearance models were tested with a PBPK approach that has been developed from published equations. An assessment of the quality of the model predictions was made on the basis of the shape of the plasma time courses and related parameters. Up to 69% of the simulations of plasma time courses made in human demonstrated a medium to high degree of accuracy for intravenous pharmacokinetics, whereas this number decreased to 23% after oral administration based on the selected criteria. The simulations resulted in a general underestimation of drug exposure (Cmax and AUC0- t ). The explanations for this underestimation are diverse. Therefore, in general it may be due to underprediction of absorption parameters and/or overprediction of distribution or oral first-pass. The implications of compound properties are demonstrated. The PBPK approach based on in vitro-input data was as accurate as the approach based on in vivo data. Overall, the scientific benefit of this modeling study was to obtain more extensive characterization of predictions of human PK from PBPK methods.


Journal of Pharmaceutical Sciences | 2011

PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: Comparative assessement of prediction methods of human clearance

Barbara J. Ring; Jenny Y. Chien; Kimberly K. Adkison; Hannah M. Jones; Malcolm Rowland; Rhys D.O. Jones; James W.T. Yates; M. Sherry Ku; Christopher R. Gibson; Handan He; Ragini Vuppugalla; Punit Marathe; Volker Fischer; Sandeep Dutta; Vikash Sinha; Thorir Björnsson; Thierry Lavé; Patrick Poulin

The objective of this study was to evaluate the performance of various allometric and in vitro-in vivo extrapolation (IVIVE) methodologies with and without plasma protein binding corrections for the prediction of human intravenous (i.v.) clearance (CL). The objective was also to evaluate the IVIVE prediction methods with animal data. Methodologies were selected from the literature. Pharmaceutical Research and Manufacturers of America member companies contributed blinded datasets from preclinical and clinical studies for 108 compounds, among which 19 drugs had i.v. clinical pharmacokinetics data and were used in the analysis. In vivo and in vitro preclinical data were used to predict CL by 29 different methods. For many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. In addition, 66 methods of predicting oral (p.o.) area under the curve (AUCp.o. ) were evaluated for 107 compounds using rational combinations of i.v. CL and bioavailability (F), and direct scaling of observed p.o. CL from preclinical species. Various statistical and outlier techniques were employed to assess the predictability of each method. Across methods, the maximum success rate in predicting human CL for the 19 drugs was 100%, 94%, and 78% of the compounds with predictions falling within 10-fold, threefold, and twofold error, respectively, of the observed CL. In general, in vivo methods performed slightly better than IVIVE methods (at least in terms of measures of correlation and global concordance), with the fu intercept method and two-species-based allometry (rat-dog) being the best performing methods. IVIVE methods using microsomes (incorporating both plasma and microsomal binding) and hepatocytes (not incorporating binding) resulted in 75% and 78%, respectively, of the predictions falling within twofold error. IVIVE methods using other combinations of binding assumptions were much less accurate. The results for prediction of AUCp.o. were consistent with i.v. CL. However, the greatest challenge to successful prediction of human p.o. CL is the estimate of F in human. Overall, the results of this initiative confirmed predictive performance of common methodologies used to predict human CL.


British Journal of Clinical Pharmacology | 2008

Maraviroc: in vitro assessment of drug–drug interaction potential

Ruth Hyland; Maurice Dickins; Claire Collins; Hannah M. Jones; Barry C. Jones

AIMS To characterize the cytochrome P450 enzyme(s) responsible for the N-dealkylation of maraviroc in vitro, and predict the extent of clinical drug-drug interactions (DDIs). METHODS Human liver and recombinant CYP microsomes were used to identify the CYP enzyme responsible for maraviroc N-dealkylation. Studies comprised enzyme kinetics and evaluation of the effects of specific CYP inhibitors. In vitro data were then used as inputs for simulation of DDIs with ketoconazole, ritonavir, saquinavir and atazanvir, using the Simcyptrade mark population-based absorption, distribution, metabolism and elimination (ADME) simulator. Study designs for simulations mirrored those actually used in the clinic. RESULTS Maraviroc was metabolized to its N-dealkylated product via a single CYP enzyme characterized by a K(m) of 21 microM and V(max) of 0.45 pmol pmol(-1) min(-1) in human liver microsomes and was inhibited by ketoconazole (CYP3A4 inhibitor). In a panel of recombinant CYP enzymes, CYP3A4 was identified as the major CYP responsible for maraviroc metabolism. Using recombinant CYP3A4, N-dealkylation was characterized by a K(m) of 13 microM and a V(max) of 3 pmol pmol(-1) CYP min(-1). Simulations therefore focused on the effect of CYP3A4 inhibitors on maraviroc pharmacokinetics. The simulated median AUC ratios were in good agreement with observed clinical changes (within twofold in all cases), although, in general, there was a trend for overprediction in the magnitude of the DDI. CONCLUSION Maraviroc is a substrate for CYP3A4, and exposure will therefore be modulated by CYP3A4 inhibitors. Simcyptrade mark has successfully simulated the extent of clinical interactions with CYP3A4 inhibitors, further validating this software as a good predictor of CYP-based DDIs.


Clinical Pharmacokinectics | 2011

Simulation of Human Intravenous and Oral Pharmacokinetics of 21 Diverse Compounds Using Physiologically Based Pharmacokinetic Modelling

Hannah M. Jones; Iain Gardner; Wendy Collard; Phil Stanley; Penny Oxley; Natilie Hosea; David R. Plowchalk; Steve S. Gernhardt; Jing Lin; Maurice Dickins; S. Ravi Rahavendran; Barry C. Jones; Kenny J. Watson; Henry Pertinez; Vikas Kumar; Susan Cole

AbstractBackground: The importance of predicting human pharmacokinetics during compound selection has been recognized in the pharmaceutical industry. To this end there are many different approaches that are applied. Methods: In this study we compared the accuracy of physiologically based pharmacokinetic (PBPK) methodologies implemented in GastroPlus™ with the one-compartment approach routinely used at Pfizer for human pharmacokinetic plasma concentration-time profile prediction. Twenty-one Pfizer compounds were selected based on the availability of relevant preclinical and clinical data. Intravenous and oral human simulations were performed for each compound. To understand any mispredictions, simulations were also performed using the observed clearance (CL) value as input into the model. Results: The simulation results using PBPK were shown to be superior to those obtained via traditional one-compartment analyses. In many cases, this difference was statistically significant. Specifically, the results showed that the PBPK approach was able to accurately predict passive distribution and absorption processes. Some issues and limitations remain with respect to the prediction of CL and active transport processes and these need to be improved to further increase the utility of PBPK modelling. A particular advantage of the PBPK approach is its ability to accurately predict the multiphasic shape of the pharmacokinetic profiles for many of the compounds tested. Conclusion: The results from this evaluation demonstrate the utility of PBPK methodology for the prediction of human pharmacokinetics. This methodology can be applied at different stages to enhance the understanding of the compounds in a particular chemical series, guide experiments, aid candidate selection and inform clinical trial design.


Journal of Pharmaceutical Sciences | 2011

PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: Comparative assessment of prediction methods of human volume of distribution

Rhys D.O. Jones; Hannah M. Jones; Malcolm Rowland; Christopher R. Gibson; James W.T. Yates; Jenny Y. Chien; Barbara J. Ring; Kimberly K. Adkison; M. Sherry Ku; Handan He; Ragini Vuppugalla; Punit Marathe; Volker Fischer; Sandeep Dutta; Vikash Sinha; Thorir Björnsson; Thierry Lavé; Patrick Poulin

The objective of this study was to evaluate the performance of various empirical, semimechanistic and mechanistic methodologies with and without protein binding corrections for the prediction of human volume of distribution at steady state (Vss ). PhRMA member companies contributed a set of blinded data from preclinical and clinical studies, and 18 drugs with intravenous clinical pharmacokinetics (PK) data were available for the analysis. In vivo and in vitro preclinical data were used to predict Vss by 24 different methods. Various statistical and outlier techniques were employed to assess the predictability of each method. There was not simply one method that predicts Vss accurately for all compounds. Across methods, the maximum success rate in predicting human Vss was 100%, 94%, and 78% of the compounds with predictions falling within tenfold, threefold, and twofold error, respectively, of the observed Vss . Generally, the methods that made use of in vivo preclinical data were more predictive than those methods that relied solely on in vitro data. However, for many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. It is recommended to initially use the in vitro tissue composition-based equations to predict Vss in preclinical species and humans, putting the assumptions and compound properties into context. As in vivo data become available, these predictions should be reassessed and rationalized to indicate the level of confidence (uncertainty) in the human Vss prediction. The top three methods that perform strongly at integrating in vivo data in this way were the Øie-Tozer, the rat -dog-human proportionality equation, and the lumped-PBPK approach. Overall, the scientific benefit of this study was to obtain greater characterization of predictions of human Vss from several methods available in the literature.

Collaboration


Dive into the Hannah M. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Poulin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Gibson

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge