Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanni Lux is active.

Publication


Featured researches published by Hanni Lux.


Monthly Notices of the Royal Astronomical Society | 2012

Subhaloes going Notts: the subhalo-finder comparison project

Julian Onions; Alexander Knebe; Frazer R. Pearce; Stuart I. Muldrew; Hanni Lux; Steffen R. Knollmann; Y. Ascasibar; Peter Behroozi; Pascal J. Elahi; Jiaxin Han; Michal Maciejewski; Manuel E. Merchan; Andrés N. Ruiz; Mario Agustín Sgró; Volker Springel; Dylan Tweed

We present a detailed comparison of the substructure properties of a single Milky Way sized dark matter halo from the Aquarius suite at five different resolutions, as identified by a variety of different (sub)halo finders for simulations of cosmic structure formation. These finders span a wide range of techniques and methodologies to extract and quantify substructures within a larger non-homogeneous background density (e.g. a host halo). This includes real-space-, phase-space-, velocity-space- and time-space-based finders, as well as finders employing a Voronoi tessellation, Friends-of-Friends techniques or refined meshes as the starting point for locating substructure. A common post-processing pipeline was used to uniformly analyse the particle lists provided by each finder. We extract quantitative and comparable measures for the subhaloes, primarily focusing on mass and the peak of the rotation curve for this particular study. We find that all of the finders agree extremely well in the presence and location of substructure and even for properties relating to the inner part of the subhalo (e.g. the maximum value of the rotation curve). For properties that rely on particles near the outer edge of the subhalo the agreement is at around the 20 per cent level. We find that the basic properties (mass and maximum circular velocity) of a subhalo can be reliably recovered if the subhalo contains more than 100 particles although its presence can be reliably inferred for a lower particle number limit of 20. We finally note that the logarithmic slope of the subhalo cumulative number count is remarkably consistent and <1 for all the finders that reached high resolution. If correct, this would indicate that the larger and more massive, respectively, substructures are the most dynamically interesting and that higher levels of the (sub)subhalo hierarchy become progressively less important.


Monthly Notices of the Royal Astronomical Society | 2013

Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites

Andrea Gatto; Filippo Fraternali; Justin I. Read; Federico Marinacci; Hanni Lux; Stefanie Walch

The spatial segregation between dwarf spheroidal (dSph) and dwarf irregular galaxies in the Local Group has long been regarded as evidence of an interaction with their host galaxies. In this paper, we assume that ram-pressure stripping is the dominant mechanism that removed gas from the dSphs and we use this to derive a lower bound on the density of the corona of the Milky Way at large distances (R similar to 50-90 kpc) from the Galactic Centre. At the same time, we derive an upper bound by demanding that the interstellar medium of the dSphs is in pressure equilibrium with the hot corona. We consider two dwarfs (Sextans and Carina) with well-determined orbits and star formation histories. Our approach introduces several novel features: (i) we use the measured star formation histories of the dwarfs to derive the time at which they last lost their gas and (via a modified version of the Kennicutt-Schmidt relation) their internal gas density at that time; (ii) we use a large suite of 2D hydrodynamical simulations to model the gas stripping; and (iii) we include supernova feedback tied to the gas content. Despite having very different orbits and star formation histories, we find results for the two dSphs that are in excellent agreement with one another. We derive an average particle density of the corona of the Milky Way at R = 50-90 kpc in the range n(cor) = 1.3-3.6 x 10(-4) cm(-3). Including additional constraints from X-ray emission limits and pulsar dispersion measurements (that strengthen our upper bound), we derive Galactic coronal density profiles. Extrapolating these to large radii, we estimate the fraction of baryons (missing baryons) that can exist within the virial radius of the Milky Way. For an isothermal corona (T-cor = 1.8 x 10(6) K), this is small - just 10-20 per cent of the expected missing baryon fraction, assuming a virial mass of 1-2 x 10(12) M-circle dot. Only a hot (T-cor = 3 x 10(6) K) and adiabatic corona can contain all of the Galaxys missing baryons. Models for the Milky Way must explain why its corona is in a hot adiabatic thermal state; or why a large fraction of its baryons lie beyond the virial radius.


Monthly Notices of the Royal Astronomical Society | 2013

Subhaloes gone Notts: spin across subhaloes and finders

Julian Onions; Y. Ascasibar; Peter Behroozi; Javier Casado; Pascal J. Elahi; Jiaxin Han; Alexander Knebe; Hanni Lux; Manuel E. Merchan; Stuart I. Muldrew; Lyndsay Old; Frazer R. Pearce; Doug Potter; Andrés N. Ruiz; Mario Agustín Sgró; Dylan Tweed; Thomas Yue

We present a study of a comparison of spin distributions of subhaloes found associated with a host halo. The subhaloes are found within two cosmological simulation families of Milky Way-like galaxies, namely the Aquarius and GHALO simulations. These two simulations use different gravity codes and cosmologies. We employ 10 different substructure finders, which span a wide range of methodologies from simple overdensity in configuration space to full 6D phase space analysis of particles. We subject the results to a common post-processing pipeline to analyse the results in a consistent manner, recovering the dimensionless spin parameter. We find that spin distribution is an excellent indicator of how well the removal of background particles (unbinding) has been carried out. We also find that the spin distribution decreases for substructures the nearer they are to the host haloes, and that the value of the spin parameter rises with enclosed mass towards the edge of the substructure. Finally, subhaloes are less rotationally supported than field haloes, with the peak of the spin distribution having a lower spin parameter.


Monthly Notices of the Royal Astronomical Society | 2015

Major mergers going Notts: challenges for modern halo finders

Peter Behroozi; Alexander Knebe; Frazer R. Pearce; Pascal J. Elahi; Jiaxin Han; Hanni Lux; Yao-Yuan Mao; Stuart I. Muldrew; Doug Potter; Chaichalit Srisawat

Merging haloes with similar masses (i.e. major mergers) pose significant challenges for halo finders. We compare five halo-finding algorithms’ (ahf, hbt, rockstar, subfind, and velociraptor) recovery of halo properties for both isolated and cosmological major mergers. We find that halo positions and velocities are often robust, but mass biases exist for every technique. The algorithms also show strong disagreement in the prevalence and duration of major mergers, especially at high redshifts (z > 1). This raises significant uncertainties for theoretical models that require major mergers for, e.g. galaxy morphology changes, size changes, or black hole growth, as well as for finding Bullet Cluster analogues. All finders not using temporal information also show host halo and subhalo relationship swaps over successive timesteps, requiring careful merger tree construction to avoid problematic mass accretion histories. We suggest that future algorithms should combine phase-space and temporal information to avoid the issues presented.


Monthly Notices of the Royal Astronomical Society | 2014

Kinematics and simulations of the stellar stream in the halo of the Umbrella Galaxy

Caroline Foster; Hanni Lux; Aaron J. Romanowsky; David Martinez-Delgado; S. Zibetti; Jacob A. Arnold; Jean P. Brodie; Robin Ciardullo; R.J. GaBany; Michael R. Merrifield; N. Singh; Jay Strader

We study the dynamics of faint stellar substructures around the Umbrella Galaxy, NGC 4651, which hosts a dramatic system of streams and shells formed through the tidal disruption of a nucleated dwarf elliptical galaxy. We elucidate the basic characteristics of the system (colours, luminosities, stellar masses) using multiband Subaru/Suprime-Cam images. The implied stellar mass ratio of the ongoing merger event is ∼1:50. We identify candidate kinematic tracers (globular clusters, planetary nebulae, H ii regions) and follow up a subset with Keck/DEIMOS (DEep Imaging Multi-object Spectrograph) spectroscopy to obtain velocities. We find that 15 of the tracers are likely associated with halo substructures, including the probable stream progenitor nucleus. These objects delineate a kinematically cold feature in position–velocity phase space. We model the stream using single test particle orbits, plus a rescaled pre-existing N-body simulation. We infer a very eccentric orbit with a period of ∼0.35 Gyr and turning points at ∼2–4 and ∼40 kpc, implying a recent passage of the satellite through the disc, which may have provoked the visible disturbances in the host galaxy. This work confirms that the kinematics of low surface brightness substructures can be recovered and modelled using discrete tracers – a breakthrough that opens up a fresh avenue for unravelling the detailed physics of minor merging.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxies going MAD: the Galaxy-Finder Comparison Project

Alexander Knebe; Noam I. Libeskind; Frazer R. Pearce; Peter Behroozi; Javier Casado; K. Dolag; Rosa Dominguez-Tenreiro; Pascal J. Elahi; Hanni Lux; Stuart I. Muldrew; Julian Onions

With the ever-increasing size and complexity of fully self-consistent simulations of galaxy formation within the framework of the cosmic web, the demands upon object finders for these simulations have simultaneously grown. To this extent we initiated the Halo-Finder Comparison Project that gathered together all the experts in the field and has so far led to two comparison papers, one for dark matter field haloes, and one for dark matter subhaloes. However, as state-of-the-art simulation codes are perfectly capable of not only following the formation and evolution of dark matter but also accounting for baryonic physics, i.e. gas hydrodynamics, star formation, stellar feedback, etc., object finders should also be capable of taking these additional physical processes into consideration. Here we report - for the first time - on a comparison of codes as applied to the Constrained Local UniversE Simulation (CLUES) of the formation of the Local Group which incorporates much of the physics relevant for galaxy formation. We compare both the properties of the three main galaxies in the simulation (representing the Milky Way, Andromeda and M33) and their satellite populations for a variety of halo finders ranging from phase space to velocity space to spherical overdensity based codes, including also a mere baryonic object finder. We obtain agreement amongst codes comparable to (if not better than) our previous comparisons - at least for the total, dark and stellar components of the objects. However, the diffuse gas content of the haloes shows great disparity, especially for low-mass satellite galaxies. This is primarily due to differences in the treatment of the thermal energy during the unbinding procedure. We acknowledge that the handling of gas in halo finders is something that needs to be dealt with carefully, and the precise treatment may depend sensitively upon the scientific problem being studied.


Monthly Notices of the Royal Astronomical Society | 2013

Streams going Notts: the tidal debris finder comparison project

Pascal J. Elahi; Jiaxin Han; Hanni Lux; Y. Ascasibar; Peter Behroozi; Alexander Knebe; Stuart I. Muldrew; Julian Onions; Frazer R. Pearce

While various codes exist to systematically and robustly find haloes and subhaloes in cosmological simulations, this is the first work to introduce and rigorously test codes that find tidal debris (streams and other unbound substructure) in fully cosmological simulations of structure formation. We use one tracking and three non-tracking codes to identify substructure (bound and unbound) in a Milky Way type simulation from the Aquarius suite and post-process their output with a common pipeline to determine the properties of these substructures in a uniform way. By using output from a fully cosmological simulation, we also take a step beyond previous studies of tidal debris that have used simple toy models. We find that both tracking and non-tracking codes agree well on the identification of subhaloes and more importantly, the unbound tidal features associated with them. The distributions of basic properties of the total substructure distribution (mass, velocity dispersion, position) are recovered with a scatter of similar to 20 per cent. Using the tracking code as our reference, we show that the non-tracking codes identify complex tidal debris with purities of similar to 40 per cent. Analysing the results of the substructure finders, we find that the general distribution of substructures differ significantly from the distribution of bound subhaloes. Most importantly, both bound and unbound substructures together constitute similar to 18 per cent of the host halo mass, which is a factor of similar to 2 higher than the fraction in self-bound subhaloes. However, this result is restricted by the remaining challenge to cleanly define when an unbound structure has become part of the host halo. Nevertheless, the more general substructure distribution provides a more complete picture of a halos accretion history.


Monthly Notices of the Royal Astronomical Society | 2014

Subhaloes gone Notts: the clustering properties of subhaloes

Arnau Pujol; E. Gaztanaga; Carlo Giocoli; Alexander Knebe; Frazer R. Pearce; Ramin A. Skibba; Y. Ascasibar; Peter Behroozi; Pascal J. Elahi; Jiaxin Han; Hanni Lux; Stuart I. Muldrew; Julian Onions; Doug Potter; Dylan Tweed

We present a study of the substructure finder dependence of subhalo clustering in the Aquarius Simulation. We run 11 different subhalo finders on the haloes of the Aquarius Simulation and study their differences in the density profile, mass fraction and two-point correlation function of subhaloes in haloes. We also study the mass and v(max) dependence of subhalo clustering. As the Aquarius Simulation has been run at different resolutions, we study the convergence with higher resolutions. We find that the agreement between finders is at around the 10 per cent level inside R-200 and at intermediate resolutions when a mass threshold is applied, and better than 5 per cent when v(max) is restricted instead of mass. However, some discrepancies appear in the highest resolution, underlined by an observed resolution dependence of subhalo clustering. This dependence is stronger for the smallest subhaloes, which are more clustered in the highest resolution, due to the detection of subhaloes within subhaloes (the sub-subhalo term). This effect modifies the mass dependence of clustering in the highest resolutions. We discuss implications of our results for models of subhalo clustering and their relation with galaxy clustering.


Monthly Notices of the Royal Astronomical Society | 2014

Subhaloes gone Notts: subhaloes as tracers of the dark matter halo shape

Kai Hoffmann; Susana Planelles; E. Gaztanaga; Alexander Knebe; Frazer R. Pearce; Hanni Lux; Julian Onions; Stuart I. Muldrew; Pascal J. Elahi; Peter Behroozi; Y. Ascasibar; Jiaxin Han; Michal Maciejewski; Manuel E. Merchan; Andrés N. Ruiz; Mario Agustín Sgró

We study the shapes of subhalo distributions from four dark-matter-only simulations of Milky Way-type haloes. Comparing the shapes derived from the subhalo distributions at high resolution to those of the underlying dark matter fields, we find the former to be more triaxial if the analysis is restricted to massive subhaloes. For three of the four analysed haloes, the increased triaxiality of the distributions of massive subhaloes can be explained by a systematic effect caused by the low number of objects. Subhaloes of the fourth halo show indications for anisotropic accretion via their strong triaxial distribution and orbit alignment with respect to the dark matter field. These results are independent of the employed subhalo finder. Comparing the shape of the observed Milky Way satellite distribution to those of high-resolution subhalo samples from simulations, we find agreement for samples of bright satellites, but significant deviations if faint satellites are included in the analysis. These deviations might result from observational incompleteness.


The Astrophysical Journal | 2015

Solving the Puzzle of Subhalo Spins

Yang Wang; Weipeng Lin; Frazer R. Pearce; Hanni Lux; Stuart I. Muldrew; Julian Onions

Investigating the spin parameter distribution of subhaloes in two high resolution isolated halo simulations, re- cent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field haloes. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhaloes as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution as expected in the tidal stripping scenario.

Collaboration


Dive into the Hanni Lux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Onions

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal J. Elahi

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Alexander Knebe

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Peter Behroozi

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiaxin Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Y. Ascasibar

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Dylan Tweed

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge