Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanno J. Bolz is active.

Publication


Featured researches published by Hanno J. Bolz.


Nature Genetics | 2001

Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

Hanno J. Bolz; Benigna von Brederlow; Alfredo Ramirez; Elizabeth C. Bryda; Kerstin Kutsche; Hans Gerd Nothwang; Mathias W. Seeliger; María Salcedo Cabrera; Manuel Caballeró Vila; Orfilio Pélaez Molina; Andreas Gal; Christian Kubisch

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa1 (RP). So far, six loci (USH1A–USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A (ref. 2) for USH1B and the gene encoding harmonin3,4 for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10 (ref. 5). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G→C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, ΔM1281 and IVS51+5G→A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper6, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.


American Journal of Human Genetics | 2011

Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta.

Jutta Becker; Oliver Semler; Christian Gilissen; Yun Li; Hanno J. Bolz; Cecilia Giunta; Carsten Bergmann; Marianne Rohrbach; Friederike Koerber; Katharina Zimmermann; Petra de Vries; Brunhilde Wirth; Eckhard Schoenau; Bernd Wollnik; Joris A. Veltman; Alexander Hoischen; Christian Netzer

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis.


Human Genetics | 2007

A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss

Inga Ebermann; Hendrik P. N. Scholl; Peter Charbel Issa; Elvir Becirovic; Jürgen Lamprecht; Bernhard Jurklies; José M. Millán; Elena Aller; Diana Mitter; Hanno J. Bolz

Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this “USH network” may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1–6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.


Nature Neuroscience | 2011

Loss of Ca v 1.3 ( CACNA1D ) function in a human channelopathy with bradycardia and congenital deafness

Shahid Mahmood Baig; Alexandra Koschak; Andreas Lieb; Mathias Gebhart; Claudia Dafinger; Gudrun Nürnberg; Amjad Ali; Ilyas Ahmad; Martina J. Sinnegger-Brauns; Niels Brandt; Jutta Engel; Matteo E. Mangoni; Muhammad Farooq; Habib U. Khan; Peter Nürnberg; Jörg Striessnig; Hanno J. Bolz

Deafness is genetically very heterogeneous and forms part of several syndromes. So far, delayed rectifier potassium channels have been linked to human deafness associated with prolongation of the QT interval on electrocardiograms and ventricular arrhythmia in Jervell and Lange-Nielsen syndrome. Cav1.3 voltage-gated L-type calcium channels (LTCCs) translate sound-induced depolarization into neurotransmitter release in auditory hair cells and control diastolic depolarization in the mouse sinoatrial node (SAN). Human deafness has not previously been linked to defects in LTCCs. We used positional cloning to identify a mutation in CACNA1D, which encodes the pore-forming α1 subunit of Cav1.3 LTCCs, in two consanguineous families with deafness. All deaf subjects showed pronounced SAN dysfunction at rest. The insertion of a glycine residue in a highly conserved, alternatively spliced region near the channel pore resulted in nonconducting calcium channels that had abnormal voltage-dependent gating. We describe a human channelopathy (termed SANDD syndrome, sinoatrial node dysfunction and deafness) with a cardiac and auditory phenotype that closely resembles that of Cacna1d−/− mice.


Journal of Clinical Investigation | 2010

PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome

Inga Ebermann; Jennifer B. Phillips; Max C. Liebau; Robert K. Koenekoop; Bernhard Schermer; Irma Lopez; Ellen Schäfer; Anne-Françoise Roux; Claudia Dafinger; Antje Bernd; Eberhart Zrenner; Mireille Claustres; Bernardo Blanco; Gudrun Nürnberg; Peter Nürnberg; Rebecca Ruland; Monte Westerfield; Thomas Benzing; Hanno J. Bolz

Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.


Journal of Clinical Investigation | 2011

Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics

Claudia Dafinger; Max C. Liebau; Solaf M. Elsayed; Yorck Hellenbroich; Eugen Boltshauser; Georg Christoph Korenke; Francesca Fabretti; Andreas R. Janecke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanswalter Zentgraf; Friederike Koerber; Klaus Addicks; Ezzat Elsobky; Thomas Benzing; Bernhard Schermer; Hanno J. Bolz

Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.


PLOS ONE | 2013

Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies

Tobias Eisenberger; Christine Neuhaus; Arif O. Khan; Christian Decker; Markus N. Preising; Christoph Friedburg; Anika Bieg; Martin Gliem; Peter Charbel Issa; Frank G. Holz; Shahid Mahmood Baig; Yorck Hellenbroich; Alberto Galvez; Konrad Platzer; Bernd Wollnik; Nadja Laddach; Saeed Reza Ghaffari; Maryam Rafati; Elke M. Botzenhart; Sigrid Tinschert; Doris Börger; Axel Bohring; Julia Schreml; Stefani Körtge-Jung; Chayim Schell-Apacik; Khadijah Bakur; Jumana Y. Al-Aama; Teresa Neuhann; Peter Herkenrath; Gudrun Nürnberg

Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.


Nature Genetics | 2013

ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3

Sylvia Hoff; Jan Halbritter; Daniel Epting; Valeska Frank; Thanh-Minh T. Nguyen; Jeroen van Reeuwijk; Christopher Boehlke; Christoph Schell; Takayuki Yasunaga; Martin Helmstädter; Miriam Mergen; Emilie Filhol; Karsten Boldt; Nicola Horn; Marius Ueffing; Edgar A. Otto; Tobias Eisenberger; Mariet W. Elting; Joanna A.E. van Wijk; Detlef Bockenhauer; Nj Sebire; Søren Rittig; Mogens Vyberg; Troels Ring; Martin Pohl; Lars Pape; Thomas J. Neuhaus; Neveen A. Soliman Elshakhs; Sarah Koon; Peter C. Harris

Nephronophthisis is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. Here we identify ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVS (NPHP2) and NPHP3. We show that ANKS6 localizes to the proximal cilium and confirm its role in renal development through knockdown experiments in zebrafish and Xenopus laevis. We also identify six families with ANKS6 mutations affected by nephronophthisis, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN hydroxylates ANKS6 and INVS and alters the composition of the ANKS6-INVS-NPHP3 module. Knockdown of Hif1an in Xenopus results in a phenotype that resembles loss of other NPHP proteins. Network analyses uncovered additional putative NPHP proteins and placed ANKS6 at the center of this NPHP module, explaining the overlapping disease manifestation caused by mutation in ANKS6, NEK8, INVS or NPHP3.


Pflügers Archiv: European Journal of Physiology | 2010

Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

Jörg Striessnig; Hanno J. Bolz; Alexandra Koschak

Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function.


Human Mutation | 2013

Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease.

Miriam Schmidts; Valeska Frank; Tobias Eisenberger; Saeed Al Turki; Albane A. Bizet; Dinu Antony; Suzanne Rix; Christian Decker; Nadine Bachmann; Martin Bald; Tobias Vinke; Burkhard Toenshoff; Natalia Di Donato; Theresa Neuhann; Jane Hartley; Eamonn R. Maher; Radovan Bogdanovic; Amira Peco-Antic; Christoph J. Mache; Ivana Joksic; Marija Guc-Scekic; Jelena Dobricic; Mirjana Brankovic-Magic; Uk K; Hanno J. Bolz; Gregory J. Pazour; Philip L. Beales; Peter J. Scambler; Sophie Saunier; Hannah M. Mitchison

Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib‐polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer‐Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer‐Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end‐stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono‐renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy.

Collaboration


Dive into the Hanno J. Bolz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge