Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inga Ebermann is active.

Publication


Featured researches published by Inga Ebermann.


Human Genetics | 2007

A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss

Inga Ebermann; Hendrik P. N. Scholl; Peter Charbel Issa; Elvir Becirovic; Jürgen Lamprecht; Bernhard Jurklies; José M. Millán; Elena Aller; Diana Mitter; Hanno J. Bolz

Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this “USH network” may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1–6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.


Journal of Clinical Investigation | 2010

PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome

Inga Ebermann; Jennifer B. Phillips; Max C. Liebau; Robert K. Koenekoop; Bernhard Schermer; Irma Lopez; Ellen Schäfer; Anne-Françoise Roux; Claudia Dafinger; Antje Bernd; Eberhart Zrenner; Mireille Claustres; Bernardo Blanco; Gudrun Nürnberg; Peter Nürnberg; Rebecca Ruland; Monte Westerfield; Thomas Benzing; Hanno J. Bolz

Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.


Journal of Clinical Investigation | 2011

Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics

Claudia Dafinger; Max C. Liebau; Solaf M. Elsayed; Yorck Hellenbroich; Eugen Boltshauser; Georg Christoph Korenke; Francesca Fabretti; Andreas R. Janecke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanswalter Zentgraf; Friederike Koerber; Klaus Addicks; Ezzat Elsobky; Thomas Benzing; Bernhard Schermer; Hanno J. Bolz

Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.


British Journal of Ophthalmology | 2009

Characterisation of severe rod-cone dystrophy in a consanguineous family with a splice site mutation in the MERTK gene.

P. Charbel Issa; Hanno J. Bolz; Inga Ebermann; E Domeier; Frank G. Holz; Hendrik P. N. Scholl

Aim: To characterise the ocular phenotype of a family segregating the splice site mutation c.2189+1G>T in the tyrosine kinase receptor gene MERTK. Methods: Five affected children of a consanguineous Moroccan family were investigated by ophthalmic examinations, including fundus photography, autofluorescence (FAF) imaging, optical coherence tomography (OCT), psychophysical and electrophysiological methods. Results: Affected children were between 5 and 19 years of age, allowing an estimation of disease progression. Electroretinography demonstrated loss of scotopic and photopic function in the first decade of life. Younger siblings showed drusen-like deposits with focal relatively increased FAF in the macular area. With increasing age, a yellowish lesion with relatively increased FAF and subsequent macular atrophy developed. Visual acuity deteriorated with age and ranged between 20/50 in the best eye of the youngest affected and 20/400 in the worst eye of the oldest affected sibling. Spectral-domain OCT revealed debris-like material in the subneurosensory space. Conclusion: The splice site mutation c.2189+1G>T in MERTK causes rod–cone dystrophy with a distinct macular phenotype. The debris in the subneurosensory space resembles that in the Royal College of Surgeons (RCS) rat being the mertk animal model. Patients might therefore benefit from advances in gene therapy that were previously achieved in the RCS rat.


Orphanet Journal of Rare Diseases | 2012

Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

Tobias Eisenberger; Rima Slim; Ahmad M. Mansour; Markus Nauck; Gudrun Nürnberg; Peter Nürnberg; Christian Decker; Claudia Dafinger; Inga Ebermann; Carsten Bergmann; Hanno J. Bolz

BackgroundUsher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family.MethodsCandidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing.ResultsUsing a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype.ConclusionMutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (p olyneuropathy, h earing loss, a taxia, r etinitis pigmentosa, and early-onset c ataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.


Human Mutation | 2008

Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing

Elvir Becirovic; Inga Ebermann; Ditta Nagy; Eberhart Zrenner; Mathias W. Seeliger; Hanno J. Bolz

Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin‐23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non‐syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype‐phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non‐pathogenic polymorphisms.


European Journal of Human Genetics | 2014

Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations

Solaf M. Elsayed; Raoul Heller; Michaela Thoenes; Maha S. Zaki; Daniel Swan; Ezzat Elsobky; Christine Zühlke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanno J. Bolz

Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.


European Journal of Human Genetics | 2009

An USH2A founder mutation is the major cause of Usher syndrome type 2 in Canadians of French origin and confirms common roots of Quebecois and Acadians.

Inga Ebermann; Robert K. Koenekoop; Irma Lopez; Lara Bou-Khzam; Renée Pigeon; Hanno J. Bolz

Congenital hearing loss affects approximately one child in 1000. About 10% of the deaf population have Usher syndrome (USH). In USH, hearing loss is complicated by retinal degeneration with onset in the first (USH1) or second (USH2) decade. In most populations, diagnostic testing is hampered by a multitude of mutations in nine genes. We have recently shown that in French Canadians from Quebec, USH1 largely results from a single USH1C founder mutation, c.216G>A (‘Acadian allele’). The genetic basis of USH2 in Canadians of French descent, however, has remained elusive. Here, we have investigated nine USH2 families from Quebec and New Brunswick (the former Acadia) by haplotype analyses of the USH2A locus and sequencing of the three known USH2 genes. Seven USH2A mutations were identified in eight patients. One of them, c.4338_4339delCT, accounts for 10 out of 18 disease alleles (55.6%). This mutation has previously been reported in an Acadian USH2 family, and it was found in homozygous state in the three Acadians of our sample. As in the case of c.216G>A (USH1C), a common haplotype is associated with c.4338_4339delCT. With a limited number of molecular tests, it will now be possible in these populations to estimate whether children with congenital hearing impairment of different degrees will develop retinal disease – with important clinical and therapeutic implications. USH2 is the second example that reveals a significant genetic overlap between Quebecois and Acadians: in contrast to current understanding, other genetic disorders present in both populations are likely based on common founder mutations as well.


Orphanet Journal of Rare Diseases | 2015

OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67).

Michaela Thoenes; Ulrike Zimmermann; Inga Ebermann; Martin Ptok; Morag A. Lewis; Holger Thiele; Susanne Morlot; Markus Hess; Andreas Gal; Tobias Eisenberger; Carsten Bergmann; Gudrun Nürnberg; Peter Nürnberg; Karen P. Steel; Marlies Knipper; Hanno J. Bolz

BackgroundEarly-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family.MethodsA panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation.ResultsOnset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141_142delTG (p.Arg50Alafs*103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice.ConclusionThe function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness.


European Journal of Human Genetics | 2009

A novel VPS13B mutation in two brothers with Cohen syndrome, cutis verticis gyrata and sensorineural deafness

André Mégarbané; Rima Slim; Gudrun Nürnberg; Inga Ebermann; Peter Nürnberg; Hanno J. Bolz

We have earlier described a syndrome characterized by microcephaly, cutis verticis gyrata, retinitis pigmentosa, cataracts, hearing loss and mental retardation (Mendelian inheritance in man (MIM) no: 605685) in two brothers from a non-consanguineous Lebanese family. In view of the rarity of the disorder and the high rate of inbreeding in the Lebanese population, we assumed an autosomal recessive trait inherited from a common ancestor. A genomewide scan was performed. The single locus on the long arm of chromosome 8 that showed homozygosity by descent comprised the gene responsible for Cohen syndrome (CS), VPS13B. We then sequenced VPS13B in the patients and found a homozygous splice site mutation. Several possible explanations for the overlap between CS and the clinical features observed in our patients are discussed. Our data highlight the potential of high-resolution homozygosity mapping in small populations with a high rate of inbreeding.

Collaboration


Dive into the Inga Ebermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irma Lopez

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Rima Slim

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge