Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanqing Dong is active.

Publication


Featured researches published by Hanqing Dong.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer

Kanak Raina; Jing Lu; Yimin Qian; Martha Altieri; Deborah M. Gordon; Ann Marie Rossi; Jing Wang; Xin Chen; Hanqing Dong; Kam W. Siu; James D. Winkler; Andrew P. Crew; Craig M. Crews; Kevin Coleman

Significance We describe the development of a small molecule that mediates the degradation of bromodomain and extra-terminal (BET) proteins and its application in the treatment of castration-resistant prostate cancer (CRPC). Few therapeutic options exist to treat CRPC, especially CRPC tumors expressing constitutively active androgen receptor (AR) splice variants that lack the ligand-binding domain and can effect androgen-independent transactivation of target genes. Importantly, we demonstrate that targeted degradation of BET proteins using proteolysis-targeting chimera (PROTAC) technology causes cell death in cultured prostate cancer cells and results in tumor growth inhibition or regression in mouse models of CRPC, including models that express high levels of AR splice variant 7. Our work thus contains a significant potential therapeutic advance in the treatment of this cancer. Prostate cancer has the second highest incidence among cancers in men worldwide and is the second leading cause of cancer deaths of men in the United States. Although androgen deprivation can initially lead to remission, the disease often progresses to castration-resistant prostate cancer (CRPC), which is still reliant on androgen receptor (AR) signaling and is associated with a poor prognosis. Some success against CRPC has been achieved by drugs that target AR signaling, but secondary resistance invariably emerges, and new therapies are urgently needed. Recently, inhibitors of bromodomain and extra-terminal (BET) family proteins have shown growth-inhibitory activity in preclinical models of CRPC. Here, we demonstrate that ARV-771, a small-molecule pan-BET degrader based on proteolysis-targeting chimera (PROTAC) technology, demonstrates dramatically improved efficacy in cellular models of CRPC as compared with BET inhibition. Unlike BET inhibitors, ARV-771 results in suppression of both AR signaling and AR levels and leads to tumor regression in a CRPC mouse xenograft model. This study is, to our knowledge, the first to demonstrate efficacy with a small-molecule BET degrader in a solid-tumor malignancy and potentially represents an important therapeutic advance in the treatment of CRPC.


Cancer Research | 2012

ROCK1 and ROCK2 Are Required for Non-Small Cell Lung Cancer Anchorage-Independent Growth and Invasion

Dominico Vigil; Tai Young Kim; Ana Plachco; Andrew Garton; Linda Castaldo; Jonathan A. Pachter; Hanqing Dong; Xin Chen; Brianna Tokar; Sharon L. Campbell; Channing J. Der

Evidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor antitumor activity. One identified mechanism for ROCK activation in cancer involves the loss of function of the DLC1 tumor suppressor gene, which encodes a GTPase activating protein (RhoGAP) for the RhoA and RhoC small GTPases. DLC-1 loss may lead to hyperactivation of RhoA/C and its downstream effectors, the ROCK kinases. We therefore determined whether loss of DLC-1 protein expression identifies non-small cell lung carcinoma (NSCLC) cell lines whose growth and invasion phenotypes are sensitive to ROCK inhibition. We identified and characterized a novel small molecule pharmacologic inhibitor of ROCK and additionally applied genetic approaches to impair ROCK1 and/or ROCK2 activity, and we determined that although NSCLC anchorage-dependent growth was ROCK-independent, both anchorage-independent growth and Matrigel invasion were ROCK-dependent. However, loss of DLC-1 expression did not correlate with ROCK activation or with OXA-06 sensitivity. Unexpectedly, suppression of ROCK1 or ROCK2 expression alone was sufficient to impair anchorage-independent growth, supporting their nonoverlapping roles in oncogenesis. Mechanistically, the block in anchorage-independent growth was associated with accumulation of cells in the G(0)-G(1) phase of the cell cycle, but not increased anoikis. We conclude that ROCK may be a useful therapeutic target for NSCLC.


Organic and Biomolecular Chemistry | 2007

A highly effective one-pot synthesis of quinolines from o-nitroarylcarbaldehydes.

An-Hu Li; Eilaf Ahmed; Xin Chen; Matthew Cox; Andrew P. Crew; Hanqing Dong; Meizhong Jin; Lifu Ma; Bijoy Panicker; Kam W. Siu; Arno G. Steinig; Kathryn M. Stolz; Paula A. R. Tavares; Brian Volk; Qinghua Weng; Doug Werner; Mark J. Mulvihill

A highly effective one-pot Friedländer quinoline synthesis using inexpensive reagents has been developed. o-Nitroarylcarbaldehydes were reduced to o-aminoarylcarbaldehydes with iron in the presence of catalytic HCl (aq.) and subsequently condensed in situ with aldehydes or ketones to form mono- or di-substituted quinolines in high yields (66-100%).


Journal of Medicinal Chemistry | 2017

Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1

Andrew P. Crew; Kanak Raina; Hanqing Dong; Yimin Qian; Jing Wang; Dominico Vigil; Yevgeniy V. Serebrenik; Brian D. Hamman; Alicia Morgan; Caterina Ferraro; Kam W. Siu; Taavi K. Neklesa; James D. Winkler; Kevin Coleman; Craig M. Crews

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that recruit an E3 ligase to a target protein to facilitate ubiquitination and subsequent degradation of that protein. While the field of targeted degraders is still relatively young, the potential for this modality to become a differentiated and therapeutic reality is strong, such that both academic and pharmaceutical institutions are now entering this interesting area of research. In this article, we describe a broadly applicable process for identifying degrader hits based on the serine/threonine kinase TANK-binding kinase 1 (TBK1) and have generalized the key structural elements associated with degradation activities. Compound 3i is a potent hit (TBK1 DC50 = 12 nM, Dmax = 96%) with excellent selectivity against a related kinase IKKε, which was further used as a chemical tool to assess TBK1 as a target in mutant K-Ras cancer cells.


Bioorganic & Medicinal Chemistry Letters | 2011

Imidazo[1,5-a]pyrazines: orally efficacious inhibitors of mTORC1 and mTORC2.

Andrew P. Crew; Shripad V. Bhagwat; Hanqing Dong; Mark Bittner; Anna Chan; Xin Chen; Heather Coate; Andrew Cooke; Prafulla C. Gokhale; Ayako Honda; Meizhong Jin; Jennifer Kahler; Christine Mantis; Mark J. Mulvihill; Paula A. Tavares-Greco; Brian Volk; Jing Wang; Douglas S. Werner; Lee D. Arnold; Jonathan A. Pachter; Robert Wild; Neil W. Gibson

The discovery and optimization of a series of imidazo[1,5-a]pyrazine inhibitors of mTOR is described. HTS hits were optimized for potency, selectivity and metabolic stability to provide the orally bioavailable proof of concept compound 4c that demonstrated target inhibition in vivo and concomitant inhibition of tumor growth in an MDA-MB-231 xenograft model.


Chemistry & Biology | 2017

The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study

George M. Burslem; Blake E. Smith; Ashton C. Lai; Saul Jaime-Figueroa; Daniel C. McQuaid; Daniel P. Bondeson; Momar Toure; Hanqing Dong; Yimin Qian; Jing Wang; Andrew P. Crew; John Hines; Craig M. Crews

Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery and optimization of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1.

Keith R. Hornberger; Dan M. Berger; Andrew P. Crew; Hanqing Dong; Andrew Kleinberg; An-Hu Li; Matthew R. Medeiros; Mark J. Mulvihill; Kam W. Siu; James G. Tarrant; Jing Wang; Felix Weng; Victoria L. Wilde; Mark Albertella; Mark Bittner; Andrew Cooke; Michael J. Gray; Paul Maresca; Earl May; Peter Meyn; William Peick; Darlene Romashko; Michael Tanowitz; Brianna Tokar

The discovery and potency optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. Micromolar hits taken from high-throughput screening were optimized for biochemical and cellular mechanistic potency to ~10nM, as exemplified by compound 12az. Application of structure-based drug design aided by co-crystal structures of TAK1 with inhibitors significantly shortened the number of iterations required for the optimization.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel 6-aminofuro[3,2-c]pyridines as potent, orally efficacious inhibitors of cMET and RON kinases

Arno G. Steinig; An-Hu Li; Jing Wang; Xin Chen; Hanqing Dong; Caterina Ferraro; Meizhong Jin; Mridula Kadalbajoo; Andrew Kleinberg; Kathryn M. Stolz; Paula A. Tavares-Greco; Ti Wang; Mark Albertella; Yue Peng; Linda Crew; Jennifer Kahler; Julie Kan; Ryan Schulz; Andy Cooke; Mark Bittner; Roy Turton; Maryland Franklin; Prafulla C. Gokhale; Darla Landfair; Christine Mantis; Jen Workman; Robert Wild; Jonathan A. Pachter; David M. Epstein; Mark J. Mulvihill

A series of novel 6-aminofuro[3,2-c]pyridines as kinase inhibitors is described, most notably, OSI-296 (6). We discuss our exploration of structure-activity relationships and optimization leading to OSI-296 and disclose its pharmacological activity against cMET and RON in cellular assays. OSI-296 is a potent and selective inhibitor of cMET and RON kinases that shows in vivo efficacy in tumor xenografts models upon oral dosing and is well tolerated.


Bioorganic & Medicinal Chemistry Letters | 2011

Potent and selective cyclohexyl-derived imidazopyrazine insulin-like growth factor 1 receptor inhibitors with in vivo efficacy

Meizhong Jin; Andrew Kleinberg; Andy Cooke; Prafulla C. Gokhale; Kenneth Foreman; Hanqing Dong; Kam W. Siu; Mark Bittner; Kristen Michelle Mulvihill; Yan Yao; Darla Landfair; Matthew O’Connor; Gilda Mak; Jonathan A. Pachter; Robert Wild; Maryland Rosenfeld-Franklin; Qun-Sheng Ji; Mark J. Mulvihill

Preclinical and emerging clinical evidence suggests that inhibiting insulin-like growth factor 1 receptor (IGF-1R) signaling may offer a promising therapeutic strategy for the treatment of several types of cancer. This Letter describes the medicinal chemistry effort towards a series of 8-amino-imidazo[1,5-a]pyrazine derived inhibitors of IGF-1R which features a substituted quinoline moiety at the C1 position and a cyclohexyl linking moiety at the C3 position. Lead optimization efforts which included the optimization of structure-activity relationships and drug metabolism and pharmacokinetic properties led to the identification of compound 9m, a potent, selective and orally bioavailable inhibitor of IGF-1R with in vivo efficacy in an IGF-driven mouse xenograft model.


ACS Medicinal Chemistry Letters | 2010

Discovery of an Orally Efficacious Imidazo[5,1-f][1,2,4]triazine Dual Inhibitor of IGF-1R and IR.

Meizhong Jin; Prafulla C. Gokhale; Andy Cooke; Kenneth Foreman; Elizabeth Buck; Earl May; Lixin Feng; Mark Bittner; Mridula Kadalbajoo; Darla Landfair; Kam W. Siu; Kathryn M. Stolz; Douglas S. Werner; Radoslaw Laufer; An-Hu Li; Hanqing Dong; Arno G. Steinig; Andrew Kleinberg; Yan Yao; Jonathan A. Pachter; Robert Wild; Mark J. Mulvihill

This report describes the investigation of a series of 5,7-disubstituted imidazo[5,1-f][1,2,4]triazine inhibitors of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR). Structure-activity relationship exploration and optimization leading to the identification, characterization, and pharmacological activity of compound 9b, a potent, selective, well-tolerated, and orally bioavailable dual inhibitor of IGF-1R and IR with in vivo efficacy in tumor xenograft models, is discussed.

Collaboration


Dive into the Hanqing Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge