Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanrui Zhang is active.

Publication


Featured researches published by Hanrui Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1.

Anne M. Curtis; Caio T. Fagundes; Guangrui Yang; Eva M. Palsson-McDermott; Paulina Wochal; Anne F. McGettrick; Niamh Foley; James O. Early; Lihong Chen; Hanrui Zhang; Chenyi Xue; Sarah S. Geiger; Karsten Hokamp; Muredach P. Reilly; Andrew N. Coogan; Elena Vigorito; Garret A. FitzGerald; Luke A. J. O'Neill

Significance The circadian clock allows an organism to anticipate daily changes imposed by the environment. The response to LPS is altered depending on time of day; however, the molecular mechanisms underlying this are unclear. We find that the clock in myeloid cells plays a role in LPS-induced sepsis by altering NF-κB activity and the induction of the microRNA miR-155. LPS causes the repression of BMAL1 via the targeting of miR-155 to two seed sequences in the 3′-untranslated region of Bmal1. Lack of miR-155 has profound effects on circadian function and circadian induction of cytokines by LPS. Thus, the molecular clock is using miR-155 as an important regulatory component to control inflammation variably across the circadian day in myeloid cells. The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of NF-κB and miR-155 induction and protects mice from LPS-induced sepsis. Bmal1 has two miR-155–binding sites in its 3′-UTR, and, in response to LPS, miR-155 binds to these two target sites, leading to suppression of Bmal1 mRNA and protein in mice and humans. miR-155 deletion perturbs circadian function, gives rise to a shorter circadian day, and ablates the circadian effect on cytokine responses to LPS. Thus, the molecular clock controls miR-155 induction that can repress BMAL1 directly. This leads to an innate immune response that is variably responsive to challenges across the circadian day.


Circulation Research | 2015

Functional Analysis and Transcriptomic Profiling of iPSC-Derived Macrophages and Their Application in Modeling Mendelian Disease

Hanrui Zhang; Chenyi Xue; Rhia Shah; Kate Bermingham; Christine Hinkle; Wenjun Li; Amrith Rodrigues; Jennifer Tabita-Martinez; John S. Millar; Marina Cuchel; Evanthia E. Pashos; Ying Liu; Ruilan Yan; Wenli Yang; Sager J. Gosai; Daniel VanDorn; Stella T. Chou; Brian D. Gregory; Edward E. Morrisey; Mingyao Li; Daniel J. Rader; Muredach P. Reilly

RATIONALE An efficient and reproducible source of genotype-specific human macrophages is essential for study of human macrophage biology and related diseases. OBJECTIVE To perform integrated functional and transcriptome analyses of human induced pluripotent stem cell-derived macrophages (IPSDMs) and their isogenic human peripheral blood mononuclear cell-derived macrophage (HMDM) counterparts and assess the application of IPSDM in modeling macrophage polarization and Mendelian disease. METHODS AND RESULTS We developed an efficient protocol for differentiation of IPSDM, which expressed macrophage-specific markers and took up modified lipoproteins in a similar manner to HMDM. Like HMDM, IPSDM revealed reduction in phagocytosis, increase in cholesterol efflux capacity and characteristic secretion of inflammatory cytokines in response to M1 (lipopolysaccharide+interferon-γ) activation. RNA-Seq revealed that nonpolarized (M0) as well as M1 or M2 (interleukin-4) polarized IPSDM shared transcriptomic profiles with their isogenic HMDM counterparts while also revealing novel markers of macrophage polarization. Relative to IPSDM and HMDM of control individuals, patterns of defective cholesterol efflux to apolipoprotein A-I and high-density lipoprotein-3 were qualitatively and quantitatively similar in IPSDM and HMDM of patients with Tangier disease, an autosomal recessive disorder because of mutations in ATP-binding cassette transporter AI. Tangier disease-IPSDM also revealed novel defects of enhanced proinflammatory response to lipopolysaccharide stimulus. CONCLUSIONS Our protocol-derived IPSDM are comparable with HMDM at phenotypic, functional, and transcriptomic levels. Tangier disease-IPSDM recapitulated hallmark features observed in HMDM and revealed novel inflammatory phenotypes. IPSDMs provide a powerful tool for study of macrophage-specific function in human genetic disorders as well as molecular studies of human macrophage activation and polarization.


International Journal of Vascular Medicine | 2012

ABO Blood Groups and Cardiovascular Diseases

Hanrui Zhang; Ciarán Mooney; Muredach P. Reilly

ABO blood groups have been associated with various disease phenotypes, particularly cardiovascular diseases. Cardiovascular diseases are the most common causes of death in developed countries and their prevalence rate is rapidly growing in developing countries. There have been substantial historical associations between non-O blood group status and an increase in some cardiovascular disorders. Recent GWASs have identified ABO as a locus for thrombosis, myocardial infarction, and multiple cardiovascular risk biomarkers, refocusing attention on mechanisms and potential for clinical advances. As we highlight in this paper, more recent work is beginning to probe the molecular basis of the disease associations observed in these observational studies. Advances in our understanding of the physiologic importance of various endothelial and platelet-derived circulating glycoproteins are elucidating the mechanisms through which the ABO blood group may determine overall cardiovascular disease risk. The role of blood group antigens in the pathogenesis of various cardiovascular disorders remains a fascinating subject with potential to lead to novel therapeutics and prognostics and to reduce the global burden of cardiovascular diseases.


American Journal of Physiology-renal Physiology | 2015

The Long Noncoding RNA Landscape in Hypoxic and Inflammatory Renal Epithelial Injury

Jennie J. Lin; Xuan Zhang; Chenyi Xue; Hanrui Zhang; Michael G.S. Shashaty; Sager J. Gosai; Nuala J. Meyer; Alison Grazioli; Christine Hinkle; Jennifer Caughey; Wenjun Li; Katalin Susztak; Brian D. Gregory; Mingyao Li; Muredach P. Reilly

Long noncoding RNAs (lncRNAs) are emerging as key species-specific regulators of cellular and disease processes. To identify potential lncRNAs relevant to acute and chronic renal epithelial injury, we performed unbiased whole transcriptome profiling of human proximal tubular epithelial cells (PTECs) in hypoxic and inflammatory conditions. RNA sequencing revealed that the protein-coding and noncoding transcriptomic landscape differed between hypoxia-stimulated and cytokine-stimulated human PTECs. Hypoxia- and inflammation-modulated lncRNAs were prioritized for focused followup according to their degree of induction by these stress stimuli, their expression in human kidney tissue, and whether exposure of human PTECs to plasma of critically ill sepsis patients with acute kidney injury modulated their expression. For three lncRNAs (MIR210HG, linc-ATP13A4-8, and linc-KIAA1737-2) that fulfilled our criteria, we validated their expression patterns, examined their loci for conservation and synteny, and defined their associated epigenetic marks. The lncRNA landscape characterized here provides insights into novel transcriptomic variations in the renal epithelial cell response to hypoxic and inflammatory stress.


Circulation Research | 2016

From Loci to Biology: Functional Genomics of Genome-Wide Association for Coronary Disease

Sylvia T. Nurnberg; Hanrui Zhang; Nicholas J. Hand; Robert C. Bauer; Danish Saleheen; Muredach P. Reilly; Daniel J. Rader

Genome-wide association studies have provided a rich collection of ≈ 58 coronary artery disease (CAD) loci that suggest the existence of previously unsuspected new biology relevant to atherosclerosis. However, these studies only identify genomic loci associated with CAD, and many questions remain even after a genomic locus is definitively implicated, including the nature of the causal variant(s) and the causal gene(s), as well as the directionality of effect. There are several tools that can be used for investigation of the functional genomics of these loci, and progress has been made on a limited number of novel CAD loci. New biology regarding atherosclerosis and CAD will be learned through the functional genomics of these loci, and the hope is that at least some of these new pathways relevant to CAD pathogenesis will yield new therapeutic targets for the prevention and treatment of CAD.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing

Jennie Lin; Yu Hu; Sara Nunez; Andrea S. Foulkes; Benjamin Cieply; Chenyi Xue; Mark Gerelus; Wenjun Li; Hanrui Zhang; Daniel J. Rader; Kiran Musunuru; Mingyao Li; Muredach P. Reilly

Objective— Human macrophages can shift phenotype across the inflammatory M1 and reparative M2 spectrum in response to environmental challenges, but the mechanisms promoting inflammatory and cardiometabolic disease–associated M1 phenotypes remain incompletely understood. Alternative splicing (AS) is emerging as an important regulator of cellular function, yet its role in macrophage activation is largely unknown. We investigated the extent to which AS occurs in M1 activation within the cardiometabolic disease context and validated a functional genomic cell model for studying human macrophage-related AS events. Approach and Results— From deep RNA-sequencing of resting, M1, and M2 primary human monocyte–derived macrophages, we found 3860 differentially expressed genes in M1 activation and detected 233 M1-induced AS events; the majority of AS events were cell- and M1-specific with enrichment for pathways relevant to macrophage inflammation. Using genetic variant data for 10 cardiometabolic traits, we identified 28 trait-associated variants within the genomic loci of 21 alternatively spliced genes and 15 variants within 7 differentially expressed regulatory splicing factors in M1 activation. Knockdown of 1 such splicing factor, CELF1, in primary human macrophages led to increased inflammatory response to M1 stimulation, demonstrating CELF1’s potential modulation of the M1 phenotype. Finally, we demonstrated that an induced pluripotent stem cell–derived macrophage system recapitulates M1-associated AS events and provides a high-fidelity macrophage AS model. Conclusions— AS plays a role in defining macrophage phenotype in a cell- and stimulus-specific fashion. Alternatively spliced genes and splicing factors with trait-associated variants may reveal novel pathways and targets in cardiometabolic diseases.


PLOS ONE | 2017

Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells.

Rachana Shah; Chenyi Xue; Hanrui Zhang; Sony Tuteja; Mingyao Li; Muredach P. Reilly; Jane F. Ferguson

Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6–8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.


Physiological Genomics | 2017

De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14+ monocytes and in adipose tissue

Chenyi Xue; Xuan Zhang; Hanrui Zhang; Jane F. Ferguson; Ying Wang; Christine Hinkle; Mingyao Li; Muredach P. Reilly

Long intergenic noncoding RNAs (lincRNAs) have emerged as key regulators of cellular functions and physiology. Yet functional lincRNAs often have low, context-specific and tissue-specific expression. We hypothesized that many human monocyte and adipose lincRNAs would be absent in current public annotations due to lincRNA tissue specificity, modest sequencing depth in public data, limitations of transcriptome assembly algorithms, and lack of dynamic physiological contexts. Deep RNA sequencing (RNA-Seq) was performed in peripheral blood CD14+ monocytes (monocytes; average ~247 million reads per sample) and adipose tissue (average ~378 million reads per sample) collected before and after human experimental endotoxemia, an in vivo inflammatory stress, to identify tissue-specific and clinically relevant lincRNAs. Using a stringent filtering pipeline, we identified 109 unannotated lincRNAs in monocytes and 270 unannotated lincRNAs in adipose. Most unannotated lincRNAs are not conserved in rodents and are tissue specific, while many have features of regulated expression and are enriched in transposable elements. Specific subsets have enhancer RNA characteristics or are expressed only during inflammatory stress. A subset of unannotated lincRNAs was validated and replicated for their presence and inflammatory induction in independent human samples and for their monocyte and adipocyte origins. Through interrogation of public genome-wide association data, we also found evidence of specific disease association for selective unannotated lincRNAs. Our findings highlight the critical need to perform deep RNA-Seq in a cell-, tissue-, and context-specific manner to annotate the full repertoire of human lincRNAs for a complete understanding of lincRNA roles in dynamic cell functions and in human disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

ABO Blood Group as a Model for Platelet Glycan Modification in Arterial Thrombosis

Ming Zhong; Hanrui Zhang; John P. Reilly; Jason D. Chrisitie; Mayumi Ishihara; Tadahiro Kumagai; Parastoo Azadi; Muredach P. Reilly

ABO blood groups have long been associated with cardiovascular disease, thrombosis, and acute coronary syndromes. Many studies over the years have shown type O blood group to be associated with lower risk of cardiovascular disease than non–type O blood groups. However, the mechanisms underlying this association remain unclear. Although ABO blood group is associated with variations in concentrations of circulating von Willebrand Factor and other endothelial cell adhesion molecules, ABO antigens are also present on several platelet surface glycoproteins and glycosphingolipids. As we highlight in this platelet-centric review, these glycomic modifications may affect platelet function in arterial thrombosis. More broadly, improving our understanding of the role of platelet glycan modifications in acute coronary syndromes may inform future diagnostics and therapeutics for cardiovascular diseases.


Journal of the American Heart Association | 2017

Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases

Hanrui Zhang; Chenyi Xue; Ying Wang; Jianting Shi; Xuan Zhang; Wenjun Li; Sara Nunez; Andrea S. Foulkes; Jennie Lin; Christine Hinkle; Wenli Yang; Edward E. Morrisey; Daniel J. Rader; Mingyao Li; Muredach P. Reilly

Background Sustained and dysfunctional macrophage activation promotes inflammatory cardiometabolic disorders, but the role of long intergenic noncoding RNA (lincRNA) in human macrophage activation and cardiometabolic disorders is poorly defined. Through transcriptomics, bioinformatics, and selective functional studies, we sought to elucidate the lincRNA landscape of human macrophages. Methods and Results We used deep RNA sequencing to assemble the lincRNA transcriptome of human monocyte‐derived macrophages at rest and following stimulation with lipopolysaccharide and IFN‐γ (interferon γ) for M1 activation and IL‐4 (interleukin 4) for M2 activation. Through de novo assembly, we identified 2766 macrophage lincRNAs, including 861 that were previously unannotated. The majority (≈85%) was nonsyntenic or was syntenic but not annotated as expressed in mouse. Many macrophage lincRNAs demonstrated tissue‐enriched transcription patterns (21.5%) and enhancer‐like chromatin signatures (60.9%). Macrophage activation, particularly to the M1 phenotype, markedly altered the lincRNA expression profiles, revealing 96 lincRNAs differentially expressed, suggesting potential roles in regulating macrophage inflammatory functions. A subset of lincRNAs overlapped genomewide association study loci for cardiometabolic disorders. MacORIS (macrophage‐enriched obesity‐associated lincRNA serving as a repressor of IFN‐γ signaling), a macrophage‐enriched lincRNA not expressed in mouse macrophages, harbors variants associated with central obesity. Knockdown of MacORIS , which is located in the cytoplasm, enhanced IFN‐γ–induced JAK2 (Janus kinase 2) and STAT1 (signal transducer and activator of transcription 1) phosphorylation in THP‐1 macrophages, suggesting a potential role as a repressor of IFN‐γ signaling. Induced pluripotent stem cell–derived macrophages recapitulated the lincRNA transcriptome of human monocyte‐derived macrophages and provided a high‐fidelity model with which to study lincRNAs in human macrophage biology, particularly those not conserved in mouse. Conclusions High‐resolution transcriptomics identified lincRNAs that form part of the coordinated response during macrophage activation, including specific macrophage lincRNAs associated with human cardiometabolic disorders that modulate macrophage inflammatory functions.

Collaboration


Dive into the Hanrui Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenyi Xue

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christine Hinkle

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mingyao Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Rader

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Wenli Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Wenjun Li

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel VanDorn

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge