Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Christian Reinecker is active.

Publication


Featured researches published by Hans-Christian Reinecker.


Journal of Immunology | 2000

Lipopolysaccharide Activates Distinct Signaling Pathways in Intestinal Epithelial Cell Lines Expressing Toll-Like Receptors

Elke Cario; Ian M. Rosenberg; Steven L. Brandwein; Paul L. Beck; Hans-Christian Reinecker; Daniel K. Podolsky

LPS elicits several immediate proinflammatoy responses in peripheral blood leukocytes via a recently described pathway including CD14, Toll-like receptors (TLR), serine-threonine kinases, and NF-κB transcription factor. However, the functional responses of intestinal epithelial cells (IEC) to stimulation with LPS are unknown. Expression of mRNA and protein for CD14 and TLRs were assessed by RT-PCR, immunoblotting, and immunohistochemistry in mouse and human IEC lines. LPS-induced activation of signaling pathways (p42/p44 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), p38, p65, NF-κB) were assessed by immunoblotting and gel shifts. CD14 mRNA and protein expression were not detectable in IEC. However, human TLR2, TLR3, and TLR4 mRNA were present in IEC. TLR4 protein was expressed in all cell lines; however, TLR2 protein was absent in HT29 cells. Immunofluorescent staining of T84 cells demonstrated the cell-surface presence of the TLRs. LPS-stimulation of IEC resulted in activation (>1.5-fold) of the three members of the MAPK family. In contrast, LPS did not significantly induce activation of JNK and p38 in CMT93 cells, p38 in T84 cells and MAPK and JNK in HT29 cells. Downstream, LPS activated NF-κB in IEC in a time-, dose-, and serum-dependent manner. IEC express TLRs that appear to mediate LPS stimulation of specific intracellular signal transduction pathways in IEC. Thus, IEC may play a frontline role in monitoring lumenal bacteria.


Gastroenterology | 2000

Claudins regulate the intestinal barrier in response to immune mediators.

Tetsushi Kinugasa; Takanori Sakaguchi; Xuibin Gu; Hans-Christian Reinecker

BACKGROUND & AIMS To determine the functional role of immune mediators in the formation of the intestinal barrier, we have examined the regulation of claudin expression by interleukin (IL)-17 in human intestinal epithelial cells. METHODS Expression of claudins, extracellular signal-related (ERK) mitogen-activated protein kinases (MAPKs), and activated ERK MAPKs was determined by immunoblotting. Claudin membrane association was assessed by immunohistochemistry and claudin messenger RNA expression by Northern blot analysis. Intestinal epithelial barrier function was characterized through transepithelial electrical resistance and mannitol tracer flux. RESULTS IL-17 induced the development of a paracellular barrier of T84 cell monolayers. Inhibition of ERK activation with the MEK inhibitor PD98059 blocked IL-17 as well as basal development of tight junctions in T84 cells. IL-17 induced formation of tight junctions correlated with up-regulation of claudin-1 and claudin-2 gene transcription. Inhibition of MEK reduced the activated and basal expression of claudin-2 messenger RNA and protein expression. Functional MEK was required for the expression and membrane association of claudin-2 but not claudin-1 in T84 cells. CONCLUSIONS MEK activity is required for claudin-mediated formation of tight junctions. IL-17 is able to regulate the intestinal barrier through the ERK MAPK pathway.


Gastroenterology | 1995

Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa

Hans-Christian Reinecker; Elwyn Loh; Douglas J. Ringler; Anjali Mehta; John L. Rombeau; Richard P. MacDermott

BACKGROUND Monocyte-chemoattractant protein 1 (MCP-1) activates macrophages and increases the migration of monocytes into tissue during inflammation. It was hypothesized that MCP-1 expression is involved in intestinal inflammation. METHODS MCP-1 protein was detected by immunohistochemistry and immunoprecipitation. Biological activity of MCP-1 was assessed using a chemotactic assay. MCP-1 messenger RNA (mRNA) levels were measured by quantitative reverse-transcription polymerase chain reaction. RESULTS In normal mucosa, MCP-1 was predominantly present in surface epithelium. In contrast, inflamed mucosa from patients with ulcerative colitis or Crohns disease contained multiple cells immunoreactive for MCP-1, including spindle cells, mononuclear cells, and endothelial cells. Furthermore, MCP-1 mRNA expression was markedly increased in inflamed intestinal biopsy specimens from patients with inflammatory bowel disease. MCP-1 was detected in isolated intestinal epithelial cells and in conditioned media from Caco-2 cells. Caco-2 cell-conditioned media stimulated monocyte chemotaxis activity that was inhibited by anti-MCP-1 antibodies. Constituitive MCP-1 mRNA levels in Caco-2 cells were up-regulated by interleukin 1 beta and down-regulated by dexamethasone. CONCLUSIONS In addition to lamina propria macrophages, endothelial cells, and spindle cells, intestinal epithelial cells are able to produce MCP-1. MCP-1 is expressed constitutively in the intestinal colonic mucosa and is up-regulated during inflammation.


Journal of Immunology | 2000

Mice with a Selective Deletion of the CC Chemokine Receptors 5 or 2 Are Protected from Dextran Sodium Sulfate-Mediated Colitis: Lack of CC Chemokine Receptor 5 Expression Results in a NK1.1+ Lymphocyte-Associated Th2-Type Immune Response in the Intestine

Pietro G. Andres; Paul L. Beck; Emiko Mizoguchi; Atsushi Mizoguchi; Atul K. Bhan; Tracey C. Dawson; William A. Kuziel; Nobuyo Maeda; Richard P. MacDermott; Daniel K. Podolsky; Hans-Christian Reinecker

The chemokine receptors CCR2 and CCR5 and their respective ligands regulate leukocyte chemotaxis and activation. To determine the role of these chemokine receptors in the regulation of the intestinal immune response, we induced colitis in CCR2- and CCR5-deficient mice by continuous oral administration of dextran sodium sulfate (DSS). Both CCR2- and CCR5-deficient mice were susceptible to DSS-induced intestinal inflammation. The lack of CCR2 or CCR5 did not reduce the DSS-induced migration of macrophages into the colonic lamina propria. However, both CCR5-deficient mice and, to a lesser degree, CCR2-deficient mice were protected from DSS-induced intestinal adhesions and mucosal ulcerations. CCR5-deficient mice were characterized by a greater relative infiltration of CD4+ and NK1.1+ lymphocyte in the colonic lamina propria when compared to wild-type and CCR2-deficient mice. In CCR5-deficient mice, mucosal mRNA expression of IL-4, IL-5, and IL-10 was increased, whereas that of IFN-γ was decreased, corresponding to a Th2 pattern of T cell activation. In CCR2-deficient mice, the infiltration of Th2-type T cells in the lamina propria was absent, but increased levels of IL-10 and decreased levels of IFN-γ may have down regulated mucosal inflammation. Our data indicate that CCR5 may be critical for the promotion of intestinal Th1-type immune responses in mice.


Gastroenterology | 1996

Intestinal epithelial cells both express and respond to interleukin 15

Hans-Christian Reinecker; Richard P. MacDermott; S. Mirau; Axel U. Dignass; Daniel K. Podolsky

BACKGROUND & AIMS Interleukin (IL)-15 exerts functional effects on lymphocytes similar to those of IL-2. IL-15 is expressed by nonlymphoid cells and may integrate these cells into classical immune responses. The aim of this study was to characterize the expression of IL-15 by intestinal epithelial cells and determine the functional roles of IL-15 within the mucosal immune system. METHODS Rat IL-15 was cloned from a rat jejunal library. Expression of IL-15 in rat and human intestinal epithelial cells was assessed by Northern and Western blotting. Tyrosine kinase activation in response to IL-15 in intestinal epithelial cells was determined by immunoprecipitation. RESULTS Rat and human intestinal epithelial cells express IL-15 messenger RNA. IL-15 activates Stat3 and stimulates the proliferation of intestinal epithelial cells. The relevance of the observations for intestinal epithelial cell function in vivo was supported by the demonstration of transcripts for IL-15 in primary human intestinal epithelial cells. CONCLUSIONS IL-15 is expressed by intestinal epithelial cells function. These experiments suggest that IL-15 is an important mediator that could integrate intestinal epithelial cell function with the intestinal immune system.


Journal of Immunology | 2000

Fractalkine Is an Epithelial and Endothelial Cell-Derived Chemoattractant for Intraepithelial Lymphocytes in the Small Intestinal Mucosa

Andreas Muehlhoefer; Lawrence J. Saubermann; Xuibin Gu; Kerstin Luedtke-Heckenkamp; Ramnik J. Xavier; Richard S. Blumberg; Daniel K. Podolsky; Richard P. MacDermott; Hans-Christian Reinecker

Fractalkine is a unique chemokine that combines properties of both chemoattractants and adhesion molecules. Fractalkine mRNA expression has been observed in the intestine. However, the role of fractalkine in the healthy intestine and during inflammatory mucosal responses is not known. Studies were undertaken to determine the expression and function of fractalkine and the fractalkine receptor CX3CR1 in the human small intestinal mucosa. We identified intestinal epithelial cells as a novel source of fractalkine. The basal expression of fractalkine mRNA and protein in the intestinal epithelial cell line T-84 was under the control of the inflammatory mediator IL-1β. Fractalkine was shed from intestinal epithelial cell surface upon stimulation with IL-1β. Fractalkine localized with caveolin-1 in detergent-insoluble glycolipid-enriched membrane microdomains in T-84 cells. Cellular distribution of fractalkine was regulated during polarization of T-84 cells. A subpopulation of isolated human intestinal intraepithelial lymphocytes expressed the fractalkine receptor CX3CR1 and migrated specifically along fractalkine gradients after activation with IL-2. Immunohistochemistry demonstrated fractalkine expression in intestinal epithelial cells and endothelial cells in normal small intestine and in active Crohn’s disease mucosa. Furthermore, fractalkine mRNA expression was significantly up-regulated in the intestine during active Crohn’s disease. This study demonstrates that fractalkine-CX3CR1-mediated mechanism may direct lymphocyte chemoattraction and adhesion within the healthy and diseased human small intestinal mucosa.


Inflammatory Bowel Diseases | 1998

The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease.

Richard P. MacDermott; Ian R. Sanderson; Hans-Christian Reinecker

Summary: The final composition of leukocytes present in a site of inflammation in response to chemokine stimulation and activation may depend on both the nature of the secreted chemokines as well as the relative expression of the multitude of specific chemokine cell surface receptors on many different cell types. Because related receptors with different affinities and cross‐reactive binding capabilities are present on each type of leukocyte, relative differences in receptor distribution and receptor affinity for specific chemokines may significantly influence which cells are ultimately attracted to and activated by each individual chemokine. Production of IL‐8, MCP‐1, and ENA‐78 by endothelial cells, LPMNC, and epithelial cells in IBD could establish a chemotactic gradient capable of influencing the increased migration of monocytes/macrophages, granulocytes, and lymphocytes from the blood stream through the endothelium into both the mucosa and submucosa during chronic IBD. The ability of chemokines to induce chemotaxis, leukocyte activation, granule exocytosis, increased production of metalloenzymes, and up‐regulation of respiratory burst activity indicates that there may be a variety of different mechanisms by which chemokines could markedly increase chronic inflammation and chronic intestinal tissue destruction in IBD.


Journal of Biological Chemistry | 2005

GRIM-19 Interacts with Nucleotide Oligomerization Domain 2 and Serves as Downstream Effector of Anti-bacterial Function in Intestinal Epithelial Cells

Nicolas Barnich; Tadakazu Hisamatsu; Jose E. Aguirre; Ramnik J. Xavier; Hans-Christian Reinecker; Daniel K. Podolsky

Nucleotide oligomerization domain 2 (NOD2) functions as a mammalian cytosolic pathogen recognition molecule, and variants have been associated with risk for Crohn disease. We recently demonstrated that NOD2 functions as an anti-bacterial factor limiting survival of intracellular invasive bacteria. To gain further insight into the mechanism of NOD2 activation and signal transduction, we performed yeast two-hybrid screening. We demonstrate that GRIM-19, a protein with homology to the NADPH dehydrogenase complex, interacts with endogenous NOD2 in HT29 cells. GRIM-19 is required for NF-κB activation following NOD2-mediated recognition of bacterial muramyl dipeptide. GRIM-19 also controls pathogen invasion of intestinal epithelial cells. GRIM-19 expression is decreased in inflamed mucosa of patients with inflammatory bowel diseases. GRIM-19 may be a key component in NOD2-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes.


Gastroenterology | 2013

Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection

Kara L. Conway; Petric Kuballa; Joo Hye Song; Khushbu K. Patel; Adam B. Castoreno; Ömer H. Yilmaz; Humberto Jijon; Mei Zhang; Leslie N. Aldrich; Eduardo J. Villablanca; Joanna M. Peloquin; Gautam Goel; In–Ah Lee; Emiko Mizoguchi; Hai Ning Shi; Atul K. Bhan; Stanley Y. Shaw; Stuart L. Schreiber; Herbert W. Virgin; Alykhan F. Shamji; Thaddeus S. Stappenbeck; Hans-Christian Reinecker; Ramnik J. Xavier

BACKGROUND & AIMS Intestinal epithelial cells aid in mucosal defense by providing a physical barrier against entry of pathogenic bacteria and secreting antimicrobial peptides (AMPs). Autophagy is an important component of immune homeostasis. However, little is known about its role in specific cell types during bacterial infection in vivo. We investigated the role of autophagy in the response of intestinal epithelial and antigen-presenting cells to Salmonella infection in mice. METHODS We generated mice deficient in Atg16l1 in epithelial cells (Atg16l1(f/f) × Villin-cre) or CD11c(+) cells (Atg16l1(f/f) × CD11c-cre); these mice were used to assess cell type-specific antibacterial autophagy. All responses were compared with Atg16l1(f/f) mice (controls). Mice were infected with Salmonella enterica serovar typhimurium; cecum and small-intestine tissues were collected for immunofluorescence, histology, and quantitative reverse-transcription polymerase chain reaction analyses of cytokines and AMPs. Modulators of autophagy were screened to evaluate their effects on antibacterial responses in human epithelial cells. RESULTS Autophagy was induced in small intestine and cecum after infection with S typhimurium, and required Atg16l1. S typhimurium colocalized with microtubule-associated protein 1 light chain 3β (Map1lc3b or LC3) in the intestinal epithelium of control mice but not in Atg16l1(f/f) × Villin-cre mice. Atg16l1(f/f) × Villin-cre mice also had fewer Paneth cells and abnormal granule morphology, leading to reduced expression of AMPs. Consistent with these defective immune responses, Atg16l1(f/f) × Villin-cre mice had increased inflammation and systemic translocation of bacteria compared with control mice. In contrast, we observed few differences between Atg16l1(f/f) × CD11c-cre and control mice. Trifluoperazine promoted autophagy and bacterial clearance in HeLa cells; these effects were reduced upon knockdown of ATG16L1. CONCLUSIONS Atg16l1 regulates autophagy in intestinal epithelial cells and is required for bacterial clearance. It also is required to prevent systemic infection of mice with enteric bacteria.


Nature Immunology | 2010

SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages

Scott B. Berger; Xavier Romero; Chunyan Ma; Guoxing Wang; William A. Faubion; Gongxian Liao; Ewoud B. Compeer; Marton Keszei; Lucia E. Rameh; Ninghai Wang; Marianne Boes; Jose R. Regueiro; Hans-Christian Reinecker; Cox Terhorst

Phagocytosis is a pivotal process by which macrophages eliminate microorganisms after recognition by pathogen sensors. Here we unexpectedly found that the self ligand and cell surface receptor SLAM functioned not only as a costimulatory molecule but also as a microbial sensor that controlled the killing of Gram-negative bacteria by macrophages. SLAM regulated activity of the NADPH oxidase NOX2 complex and phagolysosomal maturation after entering the phagosome, following interaction with the bacterial outer membrane proteins OmpC and OmpF. SLAM recruited a complex containing the intracellular class III phosphatidylinositol kinase Vps34, its regulatory protein kinase Vps15 and the autophagy-associated molecule beclin-1 to the phagosome, which was responsible for inducing the accumulation of phosphatidylinositol-3-phosphate, a regulator of both NOX2 function and phagosomal or endosomal fusion. Thus, SLAM connects the Gram-negative bacterial phagosome to ubiquitous cellular machinery responsible for the control of bacterial killing.

Collaboration


Dive into the Hans-Christian Reinecker's collaboration.

Top Co-Authors

Avatar

Daniel K. Podolsky

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiji Arihiro

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cox Terhorst

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge