Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Fredrik Veiteberg Braaten is active.

Publication


Featured researches published by Hans Fredrik Veiteberg Braaten.


Science of The Total Environment | 2014

Environmental factors influencing mercury speciation in Subarctic and Boreal lakes

Hans Fredrik Veiteberg Braaten; Heleen A. de Wit; Eirik Fjeld; Sigurd Rognerud; Espen Lydersen; Thorjørn Larssen

Environmental drivers of total mercury (TotHg) concentrations, methylmercury (MeHg) concentrations, and MeHg fractions (a proxy for methylation potential, expressed as %MeHg) were assessed in a synoptic study of 51 lakes in southeast (Boreal) and northeast (Subarctic) Norway. Concentrations of TotHg and MeHg ranged between 0.5-6.6 ng/L and <0.02-0.70 ng/L, respectively. The lakes span wide ranges of explanatory environmental variables, including water chemistry, catchment characteristics, climate conditions, and atmospheric deposition of Hg, sulphur and nitrogen (N). Dissolved organic matter (DOM), measured as total organic carbon (TOC), was the variable most strongly correlated with TotHg (r(2)=0.76) and MeHg (r(2)=0.64) concentrations. Lakes in the Subarctic region had significantly lower TotHg and MeHg concentrations, and %MeHg than lakes in the Boreal region (p<0.01), implying a lower aquatic food web exposure of aqueous Hg species in Subarctic Norway than in the Boreal lakes. Statistical modelling (partial least squares) using data from the Boreal lakes produced models explaining 82%, 75% and 50% of the spatial variation of TotHg and MeHg concentrations and %MeHg, respectively. After TOC, the most significant explanatory variables were N availability, base cation status, and lake and catchment size. We conclude that a key process driving TotHg concentrations is DOM as a transport vector, while the role of DOM for MeHg and %MeHg is likely related to a combination of transport and DOM as a substrate for methylation. Also, negative correlations between MeHg, and catchment and lake size are consistent with in-lake and in-stream de-methylation processes. The statistical relationship suggests that N availability exerts a positive contribution on concentrations of MeHg and %MeHg.


International Journal of Environmental Analytical Chemistry | 2014

Effects of sample preservation and storage on mercury speciation in natural stream water

Hans Fredrik Veiteberg Braaten; Heleen A. de Wit; Christopher Harman; Ulla Hageström; Thorjørn Larssen

Despite an increasing focus on low level methods for determination of mercury species in water over the last decades, few studies have paid attention to direct effects of different sample preparation methods (i.e. preservation techniques) on natural freshwater samples. In this study we show how different preservation techniques give significantly different concentrations of total and methylmercury in freshwaters (9 and 14% on average, respectively). Natural stream samples from a forested lake catchment were studied. Mean stream sample concentrations of total (3.6 ng/L) and methylmercury (0.06 ng/L) reflect levels typical for pristine humic boreal catchments. The main reason for the observed average differences in total and methylmercury concentrations is the use of one instead of two sample bottles and timing of sample acidification, respectively.


Environmental Toxicology and Chemistry | 2015

Methylmercury biomagnification in an Arctic pelagic food web

Anders Ruus; Ida Beathe Øverjordet; Hans Fredrik Veiteberg Braaten; Anita Evenset; Guttorm Christensen; Eldbjørg Sofie Heimstad; Geir Wing Gabrielsen; Katrine Borgå

Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations.


Environmental Toxicology and Chemistry | 2014

Seasonal and year‐to‐year variation of mercury concentration in perch (Perca fluviatilis) in boreal lakes

Hans Fredrik Veiteberg Braaten; Eirik Fjeld; Sigurd Rognerud; Espen Lund; Thorjørn Larssen

The authors examined the seasonal and year-to-year variations of mercury (Hg) concentrations in populations of perch (Perca fluviatilis) from 2 boreal freshwater lakes in southeast Norway. Fish Hg concentrations were determined seasonally (spring, summer, and autumn) over 3 yr (2010, 2011, and 2012) to test the hypothesis that there are substantial changes in fish Hg concentrations during the year (seasonal variation) as well as annually. Concentrations were significantly (p < 0.0001) different in the 2 study lakes, with mean seasonal concentrations varying from 0.24 mg/kg to 0.36 mg/kg and from 0.29 mg/kg to 0.37 mg/kg, respectively. The Hg concentrations of both perch populations showed significant year-to-year (p < 0.0001) and seasonal variation (p < 0.01). The changing fish Hg concentrations were 25% and 28% (2010-2011) and 17% and 0% (2011-2012) in the 2 lakes over the 3 yr, respectively. The results demonstrate how the significant year-to-year increase is, among other variables, related to changes in trophic position, shown through stable nitrogen (δ(15)N) isotope data. The seasonal variation is related to summer growth dilution. The results highlight the clear need for yearly studies of fish Hg concentrations, rather than the 3-yr cycle suggested by current European policy through the Water Framework Directive. The lack of yearly sampling may result in erroneous conclusions regarding fish Hg concentration time trends.


Geochemical Transactions | 2014

Biogeochemical consequences of an oxygenated intrusion into an anoxic fjord

Svetlana Pakhomova; Hans Fredrik Veiteberg Braaten; Evgeniy Yakushev; Jens Skei

BackgroundThis paper is based on the studies of the biogeochemical structure of the water column in the anoxic Fjord Hunnbunn (south-eastern Norway) performed in 2009, 2011 and 2012. This Fjord is an enclosed basin of brackish water separated by a narrow and shallow outlet to the sea with a permanently anoxic layer. We show how an oxygenated intrusion could lead to both positive and negative effects on the ecosystem state in Hunnbunn due to a change in the biogeochemical structure.ResultsDuring the stratified periods in 2009 and 2012 the anoxic layer amounted to approximately 10% of the total water volume in the Fjord, while dissolved oxygen (DO) was present in 80-90% of the water. In the autumn of 2011 the water chemistry structure observed in Fjord Hunnbunn was clearly affected by a recent oxygenated intrusion defined by abnormal salinity patterns. This led to a shift of the DO boundary position to shallower depths, resulting in a thicker anoxic layer comprising approximately 40% of the total water volume, with DO present only in approximately 60% of the water. The oxygenated water intrusions led to a twofold decrease of the concentrations of hydrogen sulphide, ammonia, phosphate and silicate in the deep layers with a simultaneous increase of these nutrients and a decrease of the pH level in the surface layers. The concentrations of manganese, iron, and mercury species changed dramatically and in particular revealed a significant supply of iron and methylmercury to the water column.ConclusionsOxic water intrusions into anoxic fjords could lead not only to the flushing of the bottom anoxia, but to a dispersal of sulphidic and low oxygen conditions to the larger bottom area. The elevation of the hydrogen sulphide to the shallower layers (that can be rapidly oxidized) is accompanied by the appearance in the subsurface water of methylmercury, which is easily accumulated by organisms and can be transported to the surrounding waters, affecting the ecosystem over a larger area.


Water Air and Soil Pollution | 2014

The Influence of Littoral on Mercury Bioaccumulation in a Humic Lake

Markus Lindholm; Heleen A. de Wit; Tor Erik Eriksen; Hans Fredrik Veiteberg Braaten

Concentration of methylmercury (MeHg) in different habitats and associated food chains may vary because of habitat characteristics that determine methylation and MeHg transfer. We examined MeHg levels in primary consumers from littoral, pelagial and profundal habitats of a boreal humic lake, and measured total mercury (TotHg) and MeHg in surface sediments at increasing depths. MeHg concentrations in primary consumers increased from profundal to littoral, a pattern which was mirrored by the surface sediment concentrations. Methylation potential (expressed as the ratio of MeHg to TotHg) was lower in profundal than in littoral sediments, suggesting that littoral sediments have higher net methylation rates. No specific MeHg-enriched entrance point in the littoral food chain was identified, however. High MeHg concentrations in littoral primary consumers and sediments suggest that shallow lake sediments are important for MeHg transfer to the aquatic food web in boreal humic lakes. Lake morphometry, most specifically the fraction of littoral, is hence likely to add to differences in MeHg bioaccumulation rates in lake food webs.


Environmental Science & Technology | 2017

A Holistic Perspective Is Needed To Ensure Success of Minamata Convention on Mercury

Yan Lin; Shuxiao Wang; Eirik Hovland Steindal; Zuguang Wang; Hans Fredrik Veiteberg Braaten; Qingru Wu; Thorjørn Larssen

Convention on Mercury Yan Lin,† Shuxiao Wang,*,‡ Eirik Hovland Steindal, Zuguang Wang, Hans Fredrik Veiteberg Braaten,† Qingru Wu,‡ and Thorjørn Larssen† †Norwegian Institute for Water Research, Oslo, 0349, Norway ‡State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China Norwegian Environment Agency, Oslo, 0661, Norway Renmin University of China, Beijing, 100872, China


International Journal of Environmental Analytical Chemistry | 2014

Effects of sample preparation on methylmercury concentrations in Arctic organisms

Hans Fredrik Veiteberg Braaten; Christopher Harman; Ida Beathe Øverjordet; Thorjørn Larssen

The biogeochemical cycling of mercury (Hg) in the marine environment is an issue of global concern, as consumption of marine fish is a major route of human exposure to the toxic specie methylmercury (MeHg). The most widely utilised and accepted technique for preparing biological tissue samples for the analysis of MeHg involves an alkaline digestion of the sample. Recent studies suggest, however, that this technique is inadequate to produce satisfactory recoveries for certain biological samples, including fish, fur, feathers and other ‘indicator’ tissues which contain relatively high levels of MeHg. Thus an improved acidic extraction method has been proven to produce more satisfactory results for a wide range of biological tissues. The present study compares the two methods on real sample material from different organisms of an Arctic marine food chain, and shows how this could lead to misinterpretation of analytical results. Results show significantly (p < 0.05) lower concentrations for alkaline digestion for large parts of the food chain; especially in fish and birds. The mean differences in concentrations found between the two different methods were 28, 31 and 25% for fish (Polar and Atlantic cod), Little Auk and Kittiwake, respectively. For samples lower in the food chain (i.e. zooplankton and krill) no significant differences were found. This leads to a clear underestimation of the levels of MeHg found higher up in these food chains; the ratio of MeHg to Hg in biological samples; and thus potentially erroneous conclusions drawn from these results concerning the biological cycling of mercury species. We hypothesise that the main reasons for these differences are poor extraction efficiency and/or matrix effects on the ethylation step prior to analysis. This is the first study to examine the effects of these artefacts on real environmental samples covering a complete food chain.


International Journal of Environmental Analytical Chemistry | 2016

Assessing bias in total mercury results after removing a subsample from the bottle

Joel Creswell; Annie Carter; Bin Chen; John F. DeWild; Vesna Fajon; Anthony Rattonetti; Mark Saffari; Martin Tsz Ki Tsui; Igor Živković; Hans Fredrik Veiteberg Braaten

ABSTRACT U.S. EPA Method 1631 for total mercury (THg) analysis in water recommends that bromine monochloride (BrCl) be added to the original bottle in which the sample was collected, to draw into solution any Hg that may have adsorbed to the bottle walls. The method also allows for the removal of a subsample of water from the sample bottle for methylmercury (MeHg) analysis prior to adding BrCl. We have demonstrated that the removal of a subsample from the sample bottle prior to THg analysis can result in a positive concentration bias. The proposed mechanism for the bias is that ‘excess’ inorganic Hg, derived from the subsample that was removed from the bottle, adsorbs to the bottle walls and is then drawn into solution when BrCl is added. To test for this bias, we conducted an interlaboratory comparison study in which nine laboratories analysed water samples in fluorinated polyethylene (FLPE) bottles for THg after removing a subsample from the sample bottle, and analysed a replicate sample bottle from which no subsample was removed. We received seven complete data sets, or 63 unique sample pairs. The positive concentration bias between the bottles was significant when comparing all samples in aggregate (1.76 ± 0.53 ng/L after subsample removal, 1.57 ± 0.58 ng/L with no subsample removal, P < 0.05), however when comparing each of the three samples individually, the only significant bias was in the saline sample (Site UJ; 1.51 ± 0.31 ng/L after subsample removal, 1.32 ± 0.47 ng/L with no subsample removal, P < 0.05). Based on the findings presented here, we conclude that water chemistry, volume of water poured off, and the sample storage temperature explain some but not all of the observed bias, and we recommend collecting THg and MeHg samples in separate bottles whenever possible.


Science of The Total Environment | 2018

The influence of permanently submerged macrophytes on sediment mercury distribution, mobility and methylation potential in a brackish Norwegian fjord

Marianne Olsen; Morten Schaanning; Hans Fredrik Veiteberg Braaten; Espen Eek; Frithjof E. Moy; Espen Lydersen

Macrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg-1, 268μgMeHgkg-1) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow. Natural recovery of the fjord was revealed by lower sediment surface concentrations (1.9-15.5mgTot-Hgkg-1, 1.3-3.2μgMeHgkg-1). Within the meadow, vertical gradients of sediment hydrogen sulfide (H2S) Eh and pH suggested microbial sulfate reduction in 2-5cm depths, coinciding with peak values of relative MeHg levels (0.5% MeHg). We assume that MeHg production rates was stimulated by the supply and availability of organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O2) within the rhizosphere. Following this, % MeHg in sediment (0-5cm) within the meadow was approximately 10× higher compared to outside the meadow. Further, enhanced availability of MeHg within the meadow was demonstrated by significantly higher fluxes (p<0.01) from sediment to overlying water (0.1-0.6ngm-2d-1) compared to sediment without macrophytes (0.02-0.2ngm-2d-1). Considering the productivity and species richness typical for such habitats, submerged macrophyte meadows located within legacy Hg contaminated sediment sites may constitute important entry points for MeHg into food webs.

Collaboration


Dive into the Hans Fredrik Veiteberg Braaten's collaboration.

Top Co-Authors

Avatar

Thorjørn Larssen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Heleen A. de Wit

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Eirik Fjeld

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Bjørnar Beylich

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Espen Lund

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Morten Schaanning

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Sigurd Rognerud

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Amanda E. Poste

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Christopher Harman

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Espen Lydersen

Norwegian Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge