Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorjørn Larssen is active.

Publication


Featured researches published by Thorjørn Larssen.


Environmental Health Perspectives | 2010

In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure

Hua Zhang; Xinbin Feng; Thorjørn Larssen; Guangle Qiu; Rolf D. Vogt

Background Fish consumption is considered the primary pathway of methylmercury (MeHg) exposure for most people in the world. However, in the inland regions of China, most of the residents eat little fish, but they live in areas where a significant amount of mercury (Hg) is present in the environment. Objectives We assessed concentrations of total Hg and MeHg in samples of water, air, agricultural products, and other exposure media to determine the main exposure pathway of Hg in populations in inland China. Methods We selected Guizhou Province for our study because it is highly contaminated with Hg and therefore is representative of other Hg-contaminated areas in China. We selected four study locations in Guizhou Province: three that represent typical environments with severe Hg pollution [due to Hg mining and smelting (Wanshan), traditional zinc smelting (recently closed; Weining), and heavy coal-based industry (Qingzhen)], and a village in a remote nature reserve (Leigong). Results The probable daily intake (PDI) of MeHg for an adult population based on 60 kg body weight (bw) was considerably higher in Wanshan than in the other three locations. With an average PDI of 0.096 μg/kg bw/day (range, 0.015–0.45 μg/kg bw/day), approximately 34% of the inhabitants in Wanshan exceeded the reference dose of 0.1 μg/kg bw/day established by the U.S. Environmental Protection Agency. The PDI of MeHg for residents in the three other locations were all well below 0.1 μg/kg bw/day (averages from 0.017 to 0.023 μg/kg bw/day, with a maximum of 0.095 μg/kg bw/day). In all four areas, rice consumption accounted for 94–96% of the PDI of MeHg. Conclusion We found that rice consumption is by far the most important MeHg exposure route; however, most of the residents (except those in Hg-mining areas) have low PDIs of MeHg.


Environmental Pollution | 2000

Acid rain and acidification in China : the importance of base cation deposition

Thorjørn Larssen; G.R. Carmichael

Acid deposition has been recognized as a serious environmental problem in China. Most acid deposition studies have focused on sulfur deposition and the pH of precipitation. However, as high concentration of alkaline dust is an important feature of the atmosphere in large parts of China, base cation deposition must be taken into account when discussing possible effects on soils and vegetation from acid deposition. We estimate the deposition of sulfur as well as calcium, i.e. the dominating anion and cation, on a regional scale in China using data both from measurements and modeling. The ratio of sulfur/calcium in deposition is then used as an indicator for identifying areas where deposition acidity exceeds alkalinity, and where soils may be at risk to acidification. The dynamic soil acidification model MAGIC is applied with data from two sites receiving high deposition loads in southwest China. The model predictions indicate that considerable soil acidification has been going on for the last decades due to acid deposition inputs. Effects on the spatial distribution of acidic deposition in China, using different future deposition scenarios, are illustrated. As the size of the anthropogenic fraction of the base cation deposition is unknown, different possible future trends in calcium deposition were used. Soil response, according to the model, using different combinations of sulfur and calcium deposition scenarios is shown. Applying the most strict measures to reduce sulfur emission will almost eliminate the acid deposition problem; however, such a scenario is not economically feasible in the short term. A strict, but possibly realistic, future scenario for sulfur may be enough to keep the situation at the present level, assuming only moderate reductions in calcium deposition. With large decreases in base cation deposition, increased soil acidification can be expected even with considerable sulfur emission reductions.


Environmental Science & Policy | 1999

Acid deposition and its effects in China: an overview

Thorjørn Larssen; Hans M. Seip; Arne Semb; Jan Mulder; Ivar P. Muniz; Rolf D. Vogt; Espen Lydersen; Valter Angell; Tang Dagang; Odd Eilertsen

Acid rain is an increasing environmental problem in China. At present SO2 emission is about 20–22 million tons. However with a growing number of large power plants the long-range transport of air pollutants is expected to increase. The highest acid deposition is near the emission sources. Wind-blown, alkaline soil dust is important in neutralizing the acidity of the emissions, especially in large parts of northern China. In the south, where alkaline soil dust contributes less to acid neutralization, the annual pH in precipitation was below 4.5 at monitoring stations in several provinces and as low as 4.1 in some urban areas. Total sulfur deposition has been estimated to be about 10 g S m−2 year−1 in heavily exposed areas. Negative effects on forests, including die-back, have been reported for relatively small areas near large cities. Since large, regional surveys have not been carried out, there are large uncertainties about effects on a regional level. The high concentrations of gaseous pollutants, especially within and near the cities, are likely to have severe effects on human health as well as on materials and vegetation. Several field and laboratory studies, as well as computer simulations, indicate that acidification of soil and soil water has occurred in the past few decades. This has probably caused elevated concentrations of toxic aluminum in soil water. At present, the toxic effect of Al is likely to be counteracted by high concentrations of calcium at many places. The Chinese authorities have recognized air pollution and acid rain as serious environmental problems, however, there are difficulties in implementing effective measures to reduce the problems. With respect to ecological effects we lack a comprehensive regional overview of the extent of the acid deposition problem in China. Such information is necessary before effective countermeasures can be developed.


Environmental Science & Technology | 2009

Soil Acidification in China: Is Controlling SO2 Emissions Enough?

Yu Zhao; Lei Duan; Jia Xing; Thorjørn Larssen; Chris P. Nielsen; Jiming Hao

Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the countrys territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.


AMBIO: A Journal of the Human Environment | 2003

Recovery from Acidification in European Surface Waters: A View to the Future

Brit Lisa Skjelkvåle; Chris D. Evans; Thorjørn Larssen; Atle Hindar; Gunnar G. Raddum

Abstract There is now overwhelming documentation of large-scale chemical recovery from surface water acidification in Europe, but to date there has been little documentation of biological recovery. Modelling studies based on current emission reduction plans in Europe indicate that there will be further chemical recovery. The uncertainties in these scenarios mainly relate to the future behavior of nitrogen in the ecosystem and the effects of climate change. Four major climate-related confounding factors that may influence the chemical and biological recovery process are: i) increased frequency and severity of sea-salt episodes; ii) increased frequency and severity of drought; iii) in-creased turnover of organic carbon; iv) increased mineralization of nitrogen. International cooperative work to abate acidification has so far been very successful, but there is still a long way to go, and many potential setbacks. It is essential that future development of water chemistry and aquatic biota in acidified waterbodies continue to be monitored in relation to further emission reductions of S and N and future effects of climate change.


Environmental Science & Technology | 2013

First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment

Siwen Wang; Jun Huang; Yang Yang; Yamei Hui; Yuxi Ge; Thorjørn Larssen; Gang Yu; Shubo Deng; Bin Wang; Christopher Harman

This is the first report on the environmental occurrence of a chlorinated polyfluorinated ether sulfonate (locally called F-53B, C8ClF16O4SK). It has been widely applied as a mist suppressant by the chrome plating industry in China for decades but has evaded the attention of environmental research and regulation. In this study, F-53B was found in high concentrations (43-78 and 65-112 μg/L for the effluent and influent, respectively) in wastewater from the chrome plating industry in the city of Wenzhou, China. F-53B was not successfully removed by the wastewater treatments in place. Consequently, it was detected in surface water that receives the treated wastewater at similar levels to PFOS (ca. 10-50 ng/L) and the concentration decreased with the increasing distance from the wastewater discharge point along the river. Initial data presented here suggest that F-53B is moderately toxic (Zebrafish LC50-96 h 15.5 mg/L) and is as resistant to degradation as PFOS. While current usage is limited to the chrome plating industry, the increasing demand for PFOS alternatives in other sectors may result in expanded usage. Collectively, the results of this work call for future assessments on the effects of this overlooked contaminant and its presence and fate in the environment.


Scientific Reports | 2013

Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

Hua Zhang; Runsheng Yin; Xinbin Feng; Jonas Sommar; Christopher Anderson; Atindra Sapkota; Xuewu Fu; Thorjørn Larssen

The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.


Environmental Science & Technology | 2011

Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification.

Thorjørn Larssen; Lei Duan; Jan Mulder

Here we present the first detailed study on fluxes of sulfur (S), nitrogen (N), and major cations in Chinese subtropical forest catchments. Data are from four study sites, differing in inputs of atmospheric pollutants and sensitivity to acidification. Results show important differences from most sites in North America and Europe. Dry deposition of S, N, and calcium (Ca) is considerably larger than wet deposition in most cases causing deposition fluxes ranging from moderate to very high, both for acidifying compounds (S deposition 1.5-10.5 kiloequivalents per hectare and year (keq ha(-1) yr(-1)); N deposition 0.4 to 2.5 keq ha(-1) yr(-1)) and for alkaline compounds (Ca deposition 0.8 to 5.7 keq ha(-1) yr(-1)). More than half of the input of acidity is neutralized by alkalinity associated with Ca deposition. Furthermore, the retention of incoming S and N is small in the soil root zone, but considerable in the deeper soils or riparian zone. Drainage water from the root zone of the soils at the two sites with the highest deposition show pronounced acidification. For the two sites with moderate deposition inputs, the root zones are retaining some of the incoming S and buffer some of the incoming acidity. The subsoils and the riparian zonesare strong sinks for N, S, and Ca. This is associated with substantial acid neutralization at all sites. These features are of major importance for the understanding of the long-term effects of acidification in China.


Environmental Science & Technology | 2012

Selenium in Soil Inhibits Mercury Uptake and Translocation in Rice (Oryza sativa L.)

Hua Zhang; Xinbin Feng; Jianming Zhu; Atindra Sapkota; Bo Meng; Heng Yao; Haibo Qin; Thorjørn Larssen

A great number of studies have confirmed that mercury-selenium (Hg-Se) antagonism is a widespread phenomenon in microorganisms, fish, poultry, humans, and other mammals. However, by comparison, little attention has been paid to plants. To investigate the influence of Se on the uptake and translocation of methylHg/inorganic Hg (MeHg/IHg) in the rice-soil system, we determined the levels of Se, IHg, and MeHg in different parts of rice plants (including the root, stem, leaf, husk, and grain (brown rice)) and corresponding soils of root zones collected from a Hg mined area, where Hg and Se co-occur due to historic Hg mining and retorting activities. The results showed that, in general, the Se levels were inversely related to the levels of both IHg and MeHg in the grains. In addition, a consistent reduction in translocation of both IHg and MeHg in the aerial shoots (i.e., the stem, leaf, husk, and grain) with increasing Se levels in the soils was observed. Furthermore, the Se levels were positively correlated with the IHg levels in the soils and the roots. These results suggest that Se may play an important role in limiting the bioaccessibility, absorption, and translocation/bioaccumulation of both IHg and MeHg in the aerial rice plant, which may be related to the formation of an Hg-Se insoluble complex in the rhizospheres and/or roots.


Environmental Toxicology and Chemistry | 2012

Environmental mercury in China: A review

Yan Lin; Rolf D. Vogt; Thorjørn Larssen

Mercury is a global pollutant that can be transported over long distances and can bioaccumulate. Currently, China is the country that contributes most to atmospheric Hg emissions and has the greatest intentional (industrial) use of Hg. Mercury in the Chinese environment is generally elevated, particularly in air and water bodies. Remote areas in China also show elevated Hg levels in air and water bodies compared to other rural regions in the world. Large river estuaries are often heavily affected by upstream industrial sources. Mercury is also elevated in sediments, a direct result of contamination in river systems. Regardless of the few heavily polluted sites, the urban environment in Chinese cities is comparable to that of other megacities in terms of Hg pollution, considering the size and rapid development of Chinese cities. Studies on Hg in fish showed generally low levels of contamination resulting from low bioaccumulation of Hg in the mostly short food chains. Mercury in rice has recently received increased research interest; elevated concentrations have been reported from rice grown in contaminated areas and may pose a threat to people dependent on such locally grown food. For the general population, Hg exposure from rice is, however, small. In addition, Hg hair concentration in the Chinese population showed generally low levels of exposure to Hg, except for people with special occupational exposure.

Collaboration


Dive into the Thorjørn Larssen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Lin

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Xinbin Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Mulder

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Hua Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Fredrik Veiteberg Braaten

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Espen Lydersen

Norwegian Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge