Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Gerd Löhmannsröben is active.

Publication


Featured researches published by Hans-Gerd Löhmannsröben.


Angewandte Chemie | 2010

Quantum dot biosensors for ultrasensitive multiplexed diagnostics

Daniel Geißler; Loïc J. Charbonnière; Raymond Ziessel; Nathaniel G. Butlin; Hans-Gerd Löhmannsröben; Niko Hildebrandt

Time- and color-resolved detection of Foerster resonance energy transfer (FRET) from luminescent terbium complexes to different semiconductor quantum dots results in a fivefold multiplexed bioassay with sub-picomolar detection limits for all five bioanalytes (see picture). The detection of up to five biomarkers occurs with a sensitivity that is 40-240-fold higher than one of the best-established single-analyte reference assays.


Journal of the American Chemical Society | 2013

Six-Color Time-Resolved Förster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing

Daniel Geißler; Stefan Stufler; Hans-Gerd Löhmannsröben; Niko Hildebrandt

Simultaneous monitoring of multiple molecular interactions and multiplexed detection of several diagnostic biomarkers at very low concentrations have become important issues in advanced biological and chemical sensing. Here we present an optically multiplexed six-color Förster resonance energy transfer (FRET) biosensor for simultaneous monitoring of five different individual binding events. We combined simultaneous FRET from one Tb complex to five different organic dyes measured in a filter-based time-resolved detection format with a sophisticated spectral crosstalk correction, which results in very efficient background suppression. The advantages and robustness of the multiplexed FRET sensor were exemplified by analyzing a 15-component lung cancer immunoassay involving 10 different antibodies and five different tumor markers in a single 50 μL human serum sample. The multiplexed biosensor offers clinically relevant detection limits in the low picomolar (ng/mL) concentration range for all five markers, thus providing an effective early screening tool for lung cancer with the possibility of distinguishing small-cell from non-small-cell lung carcinoma. This novel technology will open new doors for multiple biomarker diagnostics as well as multiplexed real-time imaging and spectroscopy.


Nature Communications | 2011

A complex multi-notch astronomical filter to suppress the bright infrared sky

Joss Bland-Hawthorn; Simon C. Ellis; Sergio G. Leon-Saval; Roger Haynes; Martin M. Roth; Hans-Gerd Löhmannsröben; Anthony Horton; J. G. Cuby; T. A. Birks; Jon Lawrence; Peter Gillingham; S. D. Ryder; Christopher Trinh

A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.


Analytical and Bioanalytical Chemistry | 2008

Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues

Carsten Hille; Maik Berg; Lena Bressel; Dorit Munzke; Philipp A. Primus; Hans-Gerd Löhmannsröben; Carsten Dosche

AbstractpH sensing in living cells represents one of the most prominent topics in biochemistry and physiology. In this study we performed one-photon and two-photon time-domain fluorescence lifetime imaging with a laser-scanning microscope using the time-correlated single-photon counting technique for imaging intracellular pH levels. The suitability of different commercial fluorescence dyes for lifetime-based pH sensing is discussed on the basis of in vitro as well of in situ measurements. Although the tested dyes are suitable for intensity-based ratiometric measurements, for lifetime-based techniques in the time-domain so far only BCECF seems to meet the requirements of reliable intracellular pH recordings in living cells.


Langmuir | 2010

Preparation of patterned zinc oxide films by breath figure templating.

Kenichi Kon; Chris Norman Brauer; Kosuke Hidaka; Hans-Gerd Löhmannsröben; Olaf Karthaus

A large variety of microporous polymer films can be prepared by the breath figure technique. Here, we report on its use for the formation of microporous zinc oxide films. Zinc acetylacetonate, a zinc oxide precursor, is either dissolved in a polymer solution that is cast at high humidity to form microporous films or is vacuum evaporated onto a preformed microporous polymer film. Annealing leads to the pyrolysis of the organic material and the formation of zinc oxide films, which show increased photocatalytic activity as compared to unstructured films.


Sensors | 2012

Optical Oxygen Micro- and Nanosensors for Plant Applications

Cindy Ast; Elmar Schmälzlin; Hans-Gerd Löhmannsröben; Joost T. van Dongen

Pioneered by Clarks microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters.


BioMed Research International | 2007

Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

Niko Hildebrandt; Loı̈c J. Charbonnière; Hans-Gerd Löhmannsröben

CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems.


The Astronomical Journal | 2013

GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression

Christopher Trinh; Simon C. Ellis; Joss Bland-Hawthorn; Jon Lawrence; Anthony Horton; Sergio G. Leon-Saval; Keith Shortridge; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Hans-Gerd Löhmannsröben; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; John W. O'Byrne; Stan Miziarski; Martin M. Roth; Brian Paul Schmidt; C. G. Tinney; Jessica Zheng

The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes “OH suppression fibers” consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7µm. GNOSIS was commissioned at the 3.9m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (� 60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibers paired with a fiber-fed spectrograph will at least provide a real benefit at low resolving powers. Subject headings: atmospheric effects – infrared: diffuse background – instrumentation: miscellaneous


Analyst | 2004

Isotope selective analysis of CO2 with tunable diode laser (TDL) spectroscopy in the NIR

Gerald Hörner; Steffen Lau; Zoltan Kantor; Hans-Gerd Löhmannsröben

The performance of a home-built tunable diode laser (TDL) spectrometer, aimed at multi-line detection of carbon dioxide, has been evaluated and optimized. In the regime of the (30(0)1)(III) <-- (000) band of (12)CO(2) around 1.6 microm, the dominating isotope species (12)CO(2), (13)CO(2), and (12)C(18)O(16)O were detected simultaneously without interference by water vapor. Detection limits in the range of few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. High sensitivity in conjunction with high precision -- typically +/-1 (per thousand) and +/-6 (per thousand) for 3% and 0.7% of CO(2), respectively -- renders this experimental approach a promising analytical concept for isotope-ratio determination of carbon dioxide in soil and breath gas. For a moderate (12)CO(2) line, the pressure dependence of the line profile was characterized in detail, to account for pressure effects on sensitive measurements.


Monthly Notices of the Royal Astronomical Society | 2012

Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results

Simon C. Ellis; Joss Bland-Hawthorn; Jon Lawrence; Anthony Horton; Christopher Trinh; Sergio G. Leon-Saval; Keith Shortridge; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; Hans-Gerd Löhmannsröben; John W. O'Byrne; Stan Miziarski; M. Roth; Brian Paul Schmidt; C. G. Tinney; J. Q. Zheng

The background noise between 1 and 1.8 ?mu m in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, the Gemini Near-infrared OH Suppression Integral Field Unit (IFU) System (GNOSIS), which suppresses 103 OH doublets between 1.47 and 1.7?mu m by a factor of 1000 with a resolving power of 10?000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the Anglo-Australian Telescope. We present measurements of sensitivity, background and throughput. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is 36?per cent, but this could be improved to 46?per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low-resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 mu m is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low-resolution OH-suppressed spectroscopy is illustrated with example observations of Seyfert galaxies and a low-mass star. The GNOSIS background is dominated by detector dark current below 1.67 mu m and by thermal emission above 1.67 mu m. After subtracting these, we detect an unidentified residual interline component of 860 +/- 210 photons s-1 m-2?arcsec-2?mu m-1, comparable to previous measurements. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artefact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimized OH suppression spectrographs. The next-generation OH suppression spectrograph will be focused on resolving the source of the interline component, taking advantage of better optimization for a fibre Bragg grating feed incorporating refinements of design based on our findings from GNOSIS. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.

Collaboration


Dive into the Hans-Gerd Löhmannsröben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond Ziessel

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Martin M. Roth

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge