Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Henning Kunz is active.

Publication


Featured researches published by Hans-Henning Kunz.


The Plant Cell | 2009

The ABC Transporter PXA1 and Peroxisomal β-Oxidation Are Vital for Metabolism in Mature Leaves of Arabidopsis during Extended Darkness

Hans-Henning Kunz; Michael Scharnewski; Kirstin Feussner; Ivo Feussner; Ulf-Ingo Flügge; Martin Fulda; Markus Gierth

All photosynthetic organisms face the difficulty of maintaining cellular metabolism in the absence of photosynthetic active radiation during the night. Although many consuming metabolic pathways (e.g., fatty acid synthesis) are only active in the light, plant cells still require basic levels of metabolic energy and reductive power during the night for sustained growth and development.Fatty acid β-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core β-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal β-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly α-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable α-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of α-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and β-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal β-oxidation plays a major role in dark-treated plants after depletion of starch reserves.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis

Hans-Henning Kunz; Markus Gierth; Andrei Herdean; Mio Satoh-Cruz; David M. Kramer; Cornelia Spetea; Julian I. Schroeder

Significance Photosynthesis is the key biochemical reaction in plants. The molecular mechanisms of potassium (K+) transport across chloroplast membranes and their relevance for chloroplast function and photosynthesis remain unknown. In our report, we identify and characterize the molecular basis of K+ (KEA1, KEA2, KEA3) and sodium (NHD1) transporters in chloroplast membranes. We demonstrate that these inner envelope and thylakoid-targeted transporters are essential for chloroplast osmoregulation and thylakoid density. In addition, we discover an unexpected high Na+ restoration of photosynthetic activity in the mutants. Multiple K+ transporters and channels and the corresponding mutants have been described and studied in the plasma membrane and organelle membranes of plant cells. However, knowledge about the molecular identity of chloroplast K+ transporters is limited. Potassium transport and a well-balanced K+ homeostasis were suggested to play important roles in chloroplast function. Because no loss-of-function mutants have been identified, the importance of K+ transporters for chloroplast function and photosynthesis remains to be determined. Here, we report single and higher-order loss-of-function mutants in members of the cation/proton antiporters-2 antiporter superfamily KEA1, KEA2, and KEA3. KEA1 and KEA2 proteins are targeted to the inner envelope membrane of chloroplasts, whereas KEA3 is targeted to the thylakoid membrane. Higher-order but not single mutants showed increasingly impaired photosynthesis along with pale green leaves and severely stunted growth. The pH component of the proton motive force across the thylakoid membrane was significantly decreased in the kea1kea2 mutants, but increased in the kea3 mutant, indicating an altered chloroplast pH homeostasis. Electron microscopy of kea1kea2 leaf cells revealed dramatically swollen chloroplasts with disrupted envelope membranes and reduced thylakoid membrane density. Unexpectedly, exogenous NaCl application reversed the observed phenotypes. Furthermore, the kea1kea2 background enables genetic analyses of the functional significance of other chloroplast transporters as exemplified here in kea1kea2Na+/H+ antiporter1 (nhd1) triple mutants. Taken together, the presented data demonstrate a fundamental role of inner envelope KEA1 and KEA2 and thylakoid KEA3 transporters in chloroplast osmoregulation, integrity, and ion and pH homeostasis.


Plant Biology | 2010

The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis

Hans-Henning Kunz; Rainer E. Häusler; Joerg Fettke; Karoline Herbst; P. Niewiadomski; Markus Gierth; Kirsten Bell; M. Steup; Ulf-Ingo Flügge; Anja Schneider

Arabidopsis thaliana mutants impaired in starch biosynthesis due to defects in either ADP glucose pyrophosphorylase (adg1-1), plastidic phosphoglucose mutase (pgm) or a new allele of plastidic phosphoglucose isomerase (pgi1-2) exhibit substantial activity of glucose-6-phosphate (Glc6P) transport in leaves that is mediated by a Glc6P/phosphate translocator (GPT) of the inner plastid envelope membrane. In contrast to the wild type, GPT2, one of two functional GPT genes of A. thaliana, is strongly induced in these mutants during the light period. The proposed function of the GPT in plastids of non-green tissues is the provision of Glc6P for starch biosynthesis and/or the oxidative pentose phosphate pathway. The function of GPT in photosynthetic tissues, however, remains obscure. The adg1-1 and pgi1-2 mutants were crossed with the gpt2-1 mutant defective in GPT2. Whereas adg1-1/gpt2-1 was starch-free, residual starch could be detected in pgi1-2/gpt2-1 and was confined to stomatal guard cells, bundle sheath cells and root tips, which parallels the reported spatial expression profile of AtGPT1. Glucose content in the cytosolic heteroglycan increased substantially in adg1-1 but decreased in pgi1-2, suggesting that the plastidic Glc6P pool contributes to its biosynthesis. The abundance of GPT2 mRNA correlates with increased levels of soluble sugars, in particular of glucose in leaves, suggesting induction by the sugar-sensing pathway. The possible function of GPT2 in starch-free mutants is discussed in the background of carbon requirement in leaves during the light-dark cycle.


The Plant Cell | 2009

Uridine-Ribohydrolase Is a Key Regulator in the Uridine Degradation Pathway of Arabidopsis

Benjamin Jung; Martin Flörchinger; Hans-Henning Kunz; Michaela Traub; Ruth Wartenberg; Wolfgang Jeblick; H. Ekkehard Neuhaus; Torsten Möhlmann

Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding Km values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter β-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.


Plant Physiology | 2009

Chlororespiration and Grana Hyperstacking: How an Arabidopsis Double Mutant Can Survive Despite Defects in Starch Biosynthesis and Daily Carbon Export from Chloroplasts

Rainer E. Häusler; Stefan Geimer; Hans-Henning Kunz; Jessica Schmitz; Peter Dörmann; Kirsten Bell; Sonja Hetfeld; Andre Guballa; Ulf-Ingo Flügge

An Arabidopsis (Arabidopsis thaliana) double mutant impaired in starch biosynthesis and the triose phosphate/phosphate translocator (adg1-1/tpt-1) is characterized by a diminished utilization of photoassimilates and the concomitant consumption of reducing power and energy produced in the photosynthetic light reaction. In order to guarantee survival, the double mutant responds to this metabolic challenge with growth retardation, an 80% decline in photosynthetic electron transport, diminished chlorophyll contents, an enhanced reduction state of plastoquinone in the dark (up to 50%), a perturbation of the redox poise in leaves (increased NADPH/NADP ratios and decreased ascorbate/dehydroascorbate ratios), hyperstacking of grana thylakoids, and an increased number of plastoglobules. Enhanced oxygen consumption and applications of inhibitors of alternative mitochondrial and chloroplast oxidases (AOX and PTOX) suggest that chlororespiration as well as mitochondrial respiration are involved in the enhanced plastoquinone reduction state in the dark. Transcript amounts of PTOX and AOX were diminished and nucleus-encoded components related to plastidic NADH reductase (NDH1) were increased in adg1-1/tpt-1 compared with the wild type. Cytochrome b559, proposed to be involved in the reoxidation of photosystem II, was not regulated at the transcriptional level. The hyperstacking of grana thylakoids mimics adaptation to low light, and increased plastoglobule numbers suggest a response to enhanced oxidative stress. Altered chloroplast organization combined with perturbations in the redox poise suggests that adg1-1/tpt-1 could be a tool for the in vivo study of retrograde signaling mechanisms controlling the coordinated expression of nucleus- and plastome-encoded photosynthetic genes.


The Plant Cell | 2012

Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

Tae-Houn Kim; Hans-Henning Kunz; Saikat Bhattacharjee; Felix Hauser; Jiyoung Park; Amy Liu; Tracy Ha; Jane E. Parker; Walter Gassmann; Julian I. Schroeder

This chemical genetics work reveals natural variation in a newly identified R protein homolog, named VICTR, that produces primary root growth arrest in response to the small molecule DFPM. DFPM perception and signal transduction require early components of the plant R gene resistance signaling network, and the R protein VICTR coresides in complexes not only with EDS1 but also PAD4. In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor–nucleotide binding–Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid–induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.


Plant Journal | 2014

Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance

Maria Müller; Hans-Henning Kunz; Julian I. Schroeder; Grant Kemp; Howard S. Young; H. Ekkehard Neuhaus

Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.


Plant Physiology | 2015

Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses

Rainer Waadt; Bianca Manalansan; Navin Rauniyar; Shintaro Munemasa; Matthew A. Booker; Benjamin Brandt; Christian Waadt; Dmitri A. Nusinow; Steve A. Kay; Hans-Henning Kunz; Karin Schumacher; Alison DeLong; John R. Yates; Julian I. Schroeder

Abscisic acid-activated protein kinases interact with each other and with protein phosphatases that modulate abscisic acid responses. The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.


PLOS ONE | 2014

Reduction of the Cytosolic Phosphoglucomutase in Arabidopsis Reveals Impact on Plant Growth, Seed and Root Development, and Carbohydrate Partitioning

Irina Malinova; Hans-Henning Kunz; Saleh Alseekh; Karoline Herbst; Alisdair R. Fernie; Markus Gierth; Joerg Fettke

Phosphoglucomutase (PGM) catalyses the interconversion of glucose 1-phosphate (G1P) and glucose 6-phosphate (G6P) and exists as plastidial (pPGM) and cytosolic (cPGM) isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3) exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.


Plant Physiology | 2012

The Acyl-Acyl Carrier Protein Synthetase from Synechocystis sp. PCC 6803 Mediates Fatty Acid Import

Simon von Berlepsch; Hans-Henning Kunz; Susanne Brodesser; Patrick Fink; Kay Marin; Ulf-Ingo Flügge; Markus Gierth

The transfer of fatty acids across biological membranes is a largely uncharacterized process, although it is essential at membranes of several higher plant organelles like chloroplasts, peroxisomes, or the endoplasmic reticulum. Here, we analyzed loss-of-function mutants of the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a model system to circumvent redundancy problems encountered in eukaryotic organisms. Cells deficient in the only cytoplasmic Synechocystis acyl-acyl carrier protein synthetase (SynAas) were highly resistant to externally provided α-linolenic acid, whereas wild-type cells bleached upon this treatment. Bleaching of wild-type cells was accompanied by a continuous increase of α-linolenic acid in total lipids, whereas no such accumulation could be observed in SynAas-deficient cells (Δsynaas). When SynAas was disrupted in the tocopherol-deficient, α-linolenic acid-hypersensitive Synechocystis mutant Δslr1736, double mutant cells displayed the same resistance phenotype as Δsynaas. Moreover, heterologous expression of SynAas in yeast (Saccharomyces cerevisiae) mutants lacking the major yeast fatty acid import protein Fat1p (Δfat1) led to the restoration of wild-type sensitivity against exogenous α-linolenic acid of the otherwise resistant Δfat1 mutant, indicating that SynAas is functionally equivalent to Fat1p. In addition, liposome assays provided direct evidence for the ability of purified SynAas protein to mediate α-[14C]linolenic acid retrieval from preloaded liposome membranes via the synthesis of [14C]linolenoyl-acyl carrier protein. Taken together, our data show that an acyl-activating enzyme like SynAas is necessary and sufficient to mediate the transfer of fatty acids across a biological membrane.

Collaboration


Dive into the Hans-Henning Kunz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Ekkehard Neuhaus

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ricarda Höhner

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge