Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Jörg Warnatz is active.

Publication


Featured researches published by Hans-Jörg Warnatz.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Nature Genetics | 2013

Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

David T. W. Jones; Barbara Hutter; Natalie Jäger; Andrey Korshunov; Marcel Kool; Hans-Jörg Warnatz; Thomas Zichner; Sally R. Lambert; Marina Ryzhova; Dong Anh Khuong Quang; Adam M. Fontebasso; Adrian M. Stütz; Sonja Hutter; Marc Zuckermann; Dominik Sturm; Jan Gronych; Bärbel Lasitschka; Sabine Schmidt; Huriye Şeker-Cin; Hendrik Witt; Marc Sultan; Meryem Ralser; Paul A. Northcott; Volker Hovestadt; Sebastian Bender; Elke Pfaff; Sebastian Stark; Damien Faury; Jeremy Schwartzentruber; Jacek Majewski

Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.


Nature | 2017

The whole-genome landscape of medulloblastoma subtypes

Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Journal of Biological Chemistry | 2011

The BTB and CNC Homology 1 (BACH1) Target Genes Are Involved in the Oxidative Stress Response and in Control of the Cell Cycle

Hans-Jörg Warnatz; Dominic Schmidt; Thomas Manke; Ilaria Piccini; Marc Sultan; Tatiana Borodina; Daniela Balzereit; Wasco Wruck; Alexey Soldatov; Martin Vingron; Hans Lehrach; Marie-Laure Yaspo

The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.


Cell Reports | 2013

Analysis of the DNA-Binding Profile and Function of TALE Homeoproteins Reveals Their Specialization and Specific Interactions with Hox Genes/Proteins

Dmitry Penkov; Daniel Martin; Luis C. Fernandez-Diaz; Catalina Ana Rosselló; Carlos Torroja; Fátima Sánchez-Cabo; Hans-Jörg Warnatz; Marc Sultan; Marie L. Yaspo; Arianna Gabrieli; Tkachuk Va; Andrea Brendolan; Francesco Blasi; Miguel Torres

The interactions of Meis, Prep, and Pbx1 TALE homeoproteins with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA-binding sequences, Prep associating mostly with promoters and housekeeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless coregulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. During evolution, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.


Nature Genetics | 2015

Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

Ute Fischer; Michael Forster; Anna Rinaldi; Thomas Risch; Stephanie Sungalee; Hans-Jörg Warnatz; Beat C. Bornhauser; Michael Gombert; Christina Kratsch; Adrian M. Stütz; Marc Sultan; Joelle Tchinda; Catherine L Worth; Vyacheslav Amstislavskiy; Nandini Badarinarayan; André Baruchel; Thies Bartram; Giuseppe Basso; Cengiz Canpolat; Gunnar Cario; Hélène Cavé; Dardane Dakaj; Mauro Delorenzi; Maria Pamela Dobay; Cornelia Eckert; Eva Ellinghaus; Sabrina Eugster; Viktoras Frismantas; Sebastian Ginzel; Oskar A. Haas

TCF3-HLF−positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF−positive and treatment-responsive TCF3-PBX1−positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


Nature Medicine | 2016

Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

Sebastian Bender; Jan Gronych; Hans-Jörg Warnatz; Barbara Hutter; Susanne Gröbner; Marina Ryzhova; Elke Pfaff; Volker Hovestadt; Florian Weinberg; Sebastian Halbach; Marcel Kool; Paul A. Northcott; Dominik Sturm; Lynn Bjerke; Thomas Zichner; Adrian M. Stütz; Kathrin Schramm; Bingding Huang; Ivo Buchhalter; Michael Heinold; Thomas Risch; Barbara C. Worst; Cornelis M. van Tilburg; Ursula Weber; Marc Zapatka; Benjamin Raeder; David Milford; Sabine Heiland; Christof von Kalle; Christopher Previti

Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET fusions activated mitogen-activated protein kinase (MAPK) signaling and, in cooperation with lesions compromising cell cycle regulation, induced aggressive glial tumors in vivo. MET inhibitors suppressed MET tumor growth in xenograft models. Finally, we treated a pediatric patient bearing a MET-fusion-expressing glioblastoma with the targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief of symptoms, but new treatment-resistant lesions appeared, indicating that combination therapies are likely necessary to achieve a durable clinical response.


BMC Genomics | 2006

Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

Yuhui Hu; Hans-Jörg Warnatz; Dominique Vanhecke; Florian Wagner; Andrea Fiebitz; Sabine Thamm; Pascal Kahlem; Hans Lehrach; Marie-Laure Yaspo; Michal Janitz

BackgroundTrisomy of human chromosome 21 (Chr21) results in Downs syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Downs syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins.ResultsWe chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Downs syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized.ConclusionThe cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Downs syndrome.


Science Signaling | 2014

Parallel Profiling of the Transcriptome, Cistrome, and Epigenome in the Cellular Response to Ionizing Radiation

Sharon Rashi-Elkeles; Hans-Jörg Warnatz; Ran Elkon; Ana Kupershtein; Yuliya Chobod; Arnon Paz; Vyacheslav Amstislavskiy; Marc Sultan; Hershel Safer; Wilfried Nietfeld; Hans Lehrach; Ron Shamir; Marie-Laure Yaspo; Yosef Shiloh

Deep sequencing identifies the epigenetic and transcriptional dynamics of the cellular response to ionizing radiation. Seq’ing the Depth of the Radiation Response The DNA damage response (DDR) is critical to the functional integrity of healthy cells exposed to environmental radiation, as well as the survival of cancer cells in response to radiation therapy. The DDR consists of well-characterized protein activation and recruitment pathways that cooperate to repair the damage. Rashi-Elkeles et al. integrated deep sequencing methods to examine the response to ionizing radiation at the genomic level in breast cancer cells. Their findings provide an extensive profile of the transcriptional regulation, epigenetic changes, and involvement of new long noncoding RNAs that are central to this cellular stress response. The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers. We identified protein-coding and previously unidentified noncoding genes that were responsive to IR, and demonstrated that IR-induced transcriptional dynamics was mediated largely by the transcription factors p53 and nuclear factor κB (NF-κB) and was primarily dependent on the kinase ataxia-telangiectasia mutated (ATM). The resultant data set provides a rich resource for understanding a basic, underlying component of a critical cellular stress response.


Nucleic Acids Research | 2010

Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters

Hans-Jörg Warnatz; Robert Querfurth; Anna Guerasimova; Xi Cheng; Stefan A. Haas; Andrew L. Hufton; Thomas Manke; Dominique Vanhecke; Wilfried Nietfeld; Martin Vingron; Michal Janitz; Hans Lehrach; Marie-Laure Yaspo

Given the inherent limitations of in silico studies relying solely on DNA sequence analysis, the functional characterization of mammalian promoters and associated cis-regulatory elements requires experimental support, which demands cloning and analysis of putative promoter regions. Focusing on human chromosome 21, we cloned 182 gene promoters of 2500 bp in length and conducted reporter gene assays on transfected-cell arrays. We found 56 promoters that were active in HEK293 cells, while another 49 promoters could be activated by treatment of cells with Trichostatin A or depletion of serum. We observed high correlations between promoter activities and endogenous transcript levels, RNA polymerase II occupancy, CpG islands and core promoter elements. Truncation of a subset of 62 promoters to ∼500 bp revealed that truncation rarely resulted in loss of activity, but rather in loss of responses to external stimuli, suggesting the presence of cis-regulatory response elements within distal promoter regions. In these regions, we found a strong enrichment of transcription factor binding sites that could potentially activate gene expression in the presence of stimuli. This study illustrates the modular functional architecture of chromosome 21 promoters and helps to reveal the complex mechanisms governing transcriptional regulation.

Collaboration


Dive into the Hans-Jörg Warnatz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Kool

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Barbara Hutter

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Volker Hovestadt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Thomas Zichner

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

David T. W. Jones

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marina Ryzhova

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Natalie Jäger

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge