Hans Oberleithner
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Oberleithner.
Atherosclerosis | 2014
Jan-Sören Padberg; Anne Wiesinger; Giovana Seno Di Marco; Stefan Reuter; Alexander Grabner; Dominik Kentrup; Alexander Lukasz; Hans Oberleithner; Hermann Pavenstädt; Marcus Brand; Philipp Kümpers
BACKGROUND AND OBJECTIVESnThe endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the luminal surface of endothelial cells, is considered as an intravascular compartment that protects the vessel wall against pathogenic insults in cardiovascular disease. We hypothesized that chronic kidney disease (CKD) is associated with reduced eGC integrity and subsequent endothelial dysfunction.nnnMETHODS & RESULTSnShedding of two major components of the eGC, namely syndecan-1 (Syn-1) and hyaluronan (HA), was measured by ELISA in 95 patients with CKD (stages 3-5) and 31 apparently healthy controls. Plasma levels of Syn-1 and HA increased steadily across CKD stages (5- and 5.5-fold, respectively P < 0.001) and were independently associated with impaired renal function after multivariate adjustment. Furthermore, Syn-1 and HA correlated tightly with plasma markers of endothelial dysfunction such as soluble fms-like tyrosine kinase-1 (sFlt-1), soluble vascular adhesion molecule-1 (sVCAM-1), von-Willebrand-Factor (vWF) and angiopoietin-2 (P < 0.001). Experimentally, excessive shedding of the eGC, evidenced by 11-fold increased Syn-1 plasma levels, was also observed in an established rat model of CKD, the 5/6-nephrectomized rats. Consistently, an atomic force microscopy-based approach evidenced a significant decrease in eGC thickness (360 ± 79 vs. 157 ± 29 nm, P = 0.001) and stiffness (0.33 ± 0.02 vs. 0.22 ± 0.01 pN/nm, P < 0.001) of aorta endothelial cell explants isolated from CKD rats.nnnCONCLUSIONnOur findings provide evidence for damage of the atheroprotective eGC as a consequence of CKD and potentially open a new avenue to pathophysiology and treatment of cardiovascular disease in renal patients.
PLOS ONE | 2013
Anne Wiesinger; Wladimir Peters; Daniel Chappell; Dominik Kentrup; Stefan Reuter; Hermann Pavenstädt; Hans Oberleithner; Philipp Kümpers
The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal side of the endothelium, regulates vascular adhesiveness and permeability. Although central to the pathophysiology of vascular barrier dysfunction in sepsis, glycocalyx damage has been generally understudied, in part because of the aberrancy of in vitro preparations and its degradation during tissue handling. The aim of this study was to analyze inflammation-induced damage of the eGC on living endothelial cells by atomic-force microscopy (AFM) nanoindentation technique. AFM revealed the existence of a mature eGC on the luminal endothelial surface of freshly isolated rodent aorta preparations ex vivo, as well as on cultured human pulmonary microvascular endothelial cells (HPMEC) in vitro. AFM detected a marked reduction in glycocalyx thickness (266 ± 12 vs. 137 ± 17 nm, P<0.0001) and stiffness (0.34 ± 0.03 vs. 0.21 ± 0.01 pN/mn, P<0.0001) in septic mice (1 mg E. coli lipopolysaccharides (LPS)/kg BW i.p.) compared to controls. Corresponding in vitro experiments revealed that sepsis-associated mediators, such as thrombin, LPS or Tumor Necrosis Factor-α alone were sufficient to rapidly decrease eGC thickness (-50%, all P<0.0001) and stiffness (-20% P<0.0001) on HPMEC. In summary, AFM nanoindentation is a promising novel approach to uncover mechanisms involved in deterioration and refurbishment of the eGC in sepsis.
Pflügers Archiv: European Journal of Physiology | 2013
Hans Oberleithner
Gliding of red blood cells (RBC) through blood vessels is mediated by the negatively charged glycocalyx located on the surfaces of both RBC and endothelial cells (EC). In various vasculopathies, EC gradually lose this protective surface layer. As a consequence, RBC come into close physical contact with the vascular endothelium. It is hypothesized that the RBC glycocalyx could be adversely affected by a poor EC glycocalyx. This hypothesis was tested by evaluating the RBC and EC surface layers with atomic force microscopy techniques. In the first series of experiments, EC monolayers grown in culture were exposed to rhythmic drag forces exerted from a blood overlay (drag force treatment), and thereafter, the EC surface was investigated in terms of thickness and adhesiveness. In the second series, the glycocalyx of the EC monolayers was disturbed by enzymatic cleavage of negatively charged heparan sulfates before drag force treatment, and thereafter, the RBC surface was evaluated. In the third series, the RBC glycocalyx of the blood overlay was enzymatically disturbed before drag force treatment, and thereafter, the EC surface was evaluated. A strong positive correlation between the RBC and EC surface properties was found (r2u2009=u20090.95). An enzymatically affected EC glycocalyx lead to the shedding of the RBC glycocalyx and vice versa. It is concluded that there is physical interaction between the blood and endothelium. Apparently, the RBC glycocalyx reflects properties of the EC glycocalyx. This observation could have a significant impact on diagnosis and treatment of cardiovascular diseases.
Nephrology Dialysis Transplantation | 2014
Hans Oberleithner
In humans, when plasma sodium concentration rises slightly beyond 140 mM, vascular endothelium sharply stiffens and nitric oxide release declines. In search of a vascular sodium sensor, the endothelial glycocalyx was identified as being a negatively charged biopolymer capable of selectively buffering sodium ions. Sodium excess damages the glycocalyx and renders vascular endothelium increasingly permeable for sodium. In the long term, sodium accumulates in the interstitium and gradually damages the organism. It was discovered that circulating red blood cells (RBC) report surface properties of the vascular endothelium. To some extent, the RBC glycocalyx mirrors the endothelial glycocalyx. A poor (charge-deprived) endothelial glycocalyx causes a poor RBC glycocalyx and vice versa. This observation led to the assumption that the current state of an individuals vascular endothelium in terms of electrical surface charges and sodium-buffering capabilities could be read simply from a blood sample. Recently, a so-called salt blood test was introduced that quantifies the RBC sodium buffer capacity and thus characterizes the endothelial function. The arguments are outlined in this article spanning a bridge from cellular nano-mechanics to clinical application.
Pflügers Archiv: European Journal of Physiology | 2013
Hans Oberleithner; Marianne Wilhelmi
Sodium buffer capacity of vascular endothelium depends on an endothelial glycocalyx rich in negatively charged heparan sulfate. It has been shown recently that after the mechanical interaction of blood with heparan sulfate-depleted endothelium, erythrocytes also lose this glycocalyx constituent. This observation led to the conclusion that the vascular sodium buffer capacity of an individual could be derived from a blood sample. A test system (salt blood test (SBT)) was developed based upon the sodium-dependent erythrocyte zeta potential. Erythrocyte sedimentation velocity was measured in isosmotic, biopolymer-supplemented electrolyte solutions of different sodium concentrations. Erythrocyte sodium sensitivity (ESS), inversely related to erythrocyte sodium buffer capacity, was expressed as the ratio of the erythrocyte sedimentation velocities of 150xa0mM over 125xa0mM Na+ solutions (ESS = Na+150/Na+125). In 61 healthy individuals (mean age, 23u2009±u20090.5xa0years), ESS ranged between 2 and 8. The mean value was 4.3u2009±u20090.19. The frequency distribution shows two peaks, one at about 3 and another one at about 5. To test whether ESS reflects changes of the endothelial glycocalyx, a cultured endothelial monolayer was exposed for 3xa0hours to a rhythmically moving blood layer (drag force experiment). When applying this procedure, we found that ESS was reduced by about 21xa0% when the endothelium was pretreated for 4xa0days with the glycocalyx protective agent WS 1442. In conclusion, the SBT could possibly serve as an in vitro test system for the evaluation of erythrocyte/vascular salt sensitivity allowing follow-up measurements in the prevention and treatment of vascular dysfunctions.
Pflügers Archiv: European Journal of Physiology | 2015
Hans Oberleithner
Negatively charged surfaces of erythrocytes (RBC) reflect properties of the endothelial glycocalyx. Plasma electrolytes counteract these charges and thus control the repulsive forces between RBC and endothelium. Although Na+ is supposed to exert a rather high affinity to the RBC surface, a direct comparison between Na+ and K+ in counteracting the RBC surface has been never made. Therefore, we measured Na+/K+ selectivity of the RBC surface in 20 healthy volunteers applying the previously published salt blood test (SBT). It turned out that the Na+/K+ selectivity ratio of the RBC glycocalyx is on average 6.1u2009±u20090.39 (ranging from 3 to 9 in different individuals). Considering standard plasma Na+ and K+ concentrations, binding probability of Na+/K+ at the RBC surface is about 180:1. The SBT reveals that plasma K+ counteracts only about 7xa0% of the negative charges in the RBC glycocalyx. As an in vivo proof of principle, a volunteer’s blood was continuously tested over 6xa0months while applying a glycocalyx protective polyphenol-rich natural compound (hawthorn extract). It turned out that RBC Na+ sensitivity (the inverse of Na+ buffer capacity) decreased significantly by about 25xa0% while Na+/K+ selectivity of the RBC glycocalyx declined only slightly by about 8 %. Taken together, (i) plasma Na+ selectively buffers the negative charges of the RBC glycocalyx, (ii) the contribution of K+ in counteracting these negative surface charges is small, and (iii) natural polyphenols applied in vivo increase RBC surface negativity. In conclusion, low plasma Na+ is supposed to favor frictionless RBC-slipping through blood vessels.
Frontiers in Physiology | 2015
Hans Oberleithner; Mike Wälte; Kristina Kusche-Vihrog
Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na+ and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.
Blood Purification | 2015
Hans Oberleithner; Marianne Wilhelmi
Smart mechanisms allow frictionless slipping of rather rigid erythrocytes (red blood cells, RBC) through narrow blood vessels. Nature solved this problem in an elegant way coating the moving object (RBC) and the tunnel wall (endothelium) by negative charges (glycocalyx). As long as these surfaces are intact, repulsive forces create a ‘security zone that keeps the respective surfaces separated from each other. However, damage of either one of these surfaces causes loss of negative charges, allowing an unfavorable physical interaction between the RBC and the endothelium. It has been recently shown that any alteration of the endothelial glycocalyx leaves nasty footprints on the RBC glycocalyx. In this scenario, sodium ions hold a prominent role. Plasma sodium is stored in the glycocalyx partially neutralizing the negative surface charges. A ‘good glycocalyx has a high sodium store capacity but still maintains sufficient surface negativity at normal plasma sodium. A ‘bad glycocalyx shows the opposite. This concept was used for the development of the so-called ‘salt blood test (SBT) that quantitatively measures RBC sodium store capacity of the glycocalyx and thus indirectly evaluates the quality of the inner vessel wall. In an initial step, the applicability of the SBT was tested in eight different medical facilities. The study shows that an increased salt sensitivity, as measured by the SBT, is more frequently found in individuals with a hypertensive history, despite antihypertensive medication. Taken together, preservation of the endothelial glycocalyx appears to be of utmost importance for maintaining a well-balanced function of the vascular system.
Kidney & Blood Pressure Research | 2016
Hans Oberleithner; Marianne Wilhelmi
Background/Aims: A significant rise of blood pressure in response to a given salt load is a weak indication of high salt sensitivity, supposed to foster the development of arterial hypertension and related diseases in later life. In search of an alternative method we recently developed the salt blood test (SBT), a new concept for quantifying salt sensitivity (SS). Based on this concept, namely that red blood cells (RBC) report on salt sensitivity, the SBT-mini was developed. Methods: The SBT-mini utilizes a droplet of capillary blood mixed with a ‘smart Na+ cocktail. Red blood cells (RBC) of this mixture are allowed to sediment by gravity in a glass tube. SS is quantified by measuring RBC sedimentation rate. 90 healthy volunteers (39 males, 51 females; mean age: 23±0.5 years) were evaluated and ‘standard values for males and females were derived. Results: Sodium buffer capacity of female blood is about 20 % smaller as compared to male blood due to the lower hematocrit of females. SS of an individual is related to the mean standard value (set to 100 %) of the respective male/female cohort. High SS (> 120 %) has been found in 31 % of males and 28 % of females. Conclusions: SS can be estimated derived from the individual RBC sodium buffer capacity as measured by the SBT-mini. About one third of a healthy test cohort exhibits a high sensitivity to salt. Reduction of sodium consumption to at least two grams per day (equals five grams of NaCl per day as suggested by the WHO) is recommended, particularly for individuals with high salt sensitivity.
Cellular Physiology and Biochemistry | 2015
Katrin Kliche; Ulrich Gerth; Hermann Pavenstädt; Hans Oberleithner
Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges) leads to increased erythrocyte sodium sensitivity (ESS) quantified by a recently developed salt-blood-test (SBT). The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD) alters ESS. Methods: In 38 patients with end stage renal disease (ESRD) ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure). Results: Before 4h-HD, 20 patients (out of 38) were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical) injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.