Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Rudolf Widmer is active.

Publication


Featured researches published by Hans Rudolf Widmer.


Brain Research Bulletin | 2008

Functions and effects of creatine in the central nervous system

Robert H. Andres; Angélique Ducray; Uwe Schlattner; Theo Wallimann; Hans Rudolf Widmer

Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.


Experimental Neurology | 1998

Implants of Polymer-Encapsulated Genetically Modified Cells Releasing Glial Cell Line-Derived Neurotrophic Factor Improve Survival, Growth, and Function of Fetal Dopaminergic Grafts

J. Sautter; J.L. Tseng; D. Braguglia; Patrick Aebischer; C. Spenger; Rolf W. Seiler; Hans Rudolf Widmer; A.D. Zurn

Neural transplantation as an experimental therapy for Parkinsonian patients has been shown to be effective in several clinical trials. Further benefit, however, may be expected if the grafting is combined with a treatment of neurotrophic factors thus improving the survival and growth of grafted embryonic dopaminergic neurons. Continuous trophic support may be needed and therefore requires the long-term delivery of neurotrophic factors to the brain. We demonstrate here that the implantation of polymer-encapsulated cells genetically engineered to continuously secrete glial cell line-derived neurotrophic factor to the adult rat striatum improves dopaminergic graft survival and function. Near complete compensation of 6-hydroxydopamine-induced rotation was already achieved within 3 weeks postgrafting in rats that received glial cell line-derived neurotrophic factor-releasing capsules in addition to dopaminergic cell grafts of cultured tissue. Rats without trophic factor supply showed only little recovery at the same time point and sham grafted rats showed no recovery. The number of tyrosine hydroxylase-immunoreactive cells per graft was increased 2.6-fold in the presence of glial cell line-derived neurotrophic factor 6 weeks postgrafting. Similarly, tyrosine hydroxylase-immunoreactive fibers around the graft were increased by 53%. Moreover, these fibers showed a preferential growth towards the trophic factor-releasing capsule. Taken together, these results provide evidence that encapsulated genetically engineered cells are an effective means of long-term trophic factor supply into the adult rat brain and that the delivery of glial cell line-derived neurotrophic factor can sustain dopaminergic graft function and survival.


Neuroreport | 1993

BDNF protection of basal forebrain cholinergic neurons after axotomy: complete protection of p75NGFR-positive cells.

Hans Rudolf Widmer; Beat Knusel; Franz Hefti

To elucidate the role of brain derived neurotrophic factor (BDNF) in the protection of cholinergic neurons in the basal forebrain, recombinant human BDNF and as a positive control, human recombinant nerve growth factor (NGF), were infused for 20 days into the lateral ventricle of adult rats with fimbrial transections. BDNF and NGF administration protected cholinergic basal forebrain cells from degenerative changes after axotomy, as assessed with immunohistochemical analysis of the two cholinergic marker proteins ChAT and p75NGFR. Both BDNF and NGF treatment completely prevent the lesion induced loss of p75NGFR-positive cells in the septal area of animals with fimbrial transections. This finding contrasts with the result obtained with ChAT immunohistochemistry, where BDNF treatment protects only part of the population of neurons which disappear following the transections. These findings are compatible with the view that there is a cascade of events induced in cholinergic neurons by the transections, so that ChAT expression is lost before p75NGFR expression, and that BDNF reduces degenerative events in the entire population of cholinergic neurons, maintaining some of them as p75NGFR-positive but ChAT-negative cells.


Neuroscience | 2005

Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue

Robert H. Andres; Alexander W. Huber; Uwe Schlattner; Alberto Pérez-Bouza; Sandra H. Krebs; Rolf W. Seiler; Theo Wallimann; Hans Rudolf Widmer

Parkinsons disease is a disabling neurodegenerative disorder of unknown etiology characterized by a predominant and progressive loss of dopaminergic neurons in the substantia nigra. Recent findings suggest that impaired energy metabolism plays an important role in the pathogenesis of this disorder. The endogenously occurring guanidino compound creatine is a substrate for mitochondrial and cytosolic creatine kinases. Creatine supplementation improves the function of the creatine kinase/phosphocreatine system by increasing cellular creatine and phosphocreatine levels and the rate of ATP resynthesis. In addition, mitochondrial creatine kinase together with high cytoplasmic creatine levels inhibit mitochondrial permeability transition, a major step in early apoptosis. In the present study, we analyzed the effects of externally added creatine on the survival and morphology of dopaminergic neurons and also addressed its neuroprotective properties in primary cultures of E14 rat ventral mesencephalon. Chronic administration of creatine [5 mM] for 7 days significantly increased survival (by 1.32-fold) and soma size (by 1.12-fold) of dopaminergic neurons, while having no effect on other investigated morphological parameters. Most importantly, concurrent creatine exerted significant neuroprotection for dopaminergic neurons against neurotoxic insults induced by serum and glucose deprivation (P < 0.01), 1-methyl-4-phenyl pyridinium ion (MPP+) [15 microM] and 6-hydroxydopamine (6-OHDA) [90 microM] exposure (P < 0.01). In addition, creatine treatment significantly protected dopaminergic cells facing MPP+-induced deterioration of neuronal morphology including overall process length/neuron (by 60%), number of branching points/neuron (by 80%) and area of influence per individual neuron (by 60%). Less pronounced effects on overall process length/neuron and number of branching points/neuron were also found after 6-OHDA exposure (P < 0.05) and serum/glucose deprivation (P < 0.05). In conclusion, our findings identify creatine as a rather potent natural survival- and neuroprotective factor for developing nigral dopaminergic neurons, which is of relevance for therapeutic approaches in Parkinsons disease and for the improvement of cell replacement strategies.


Brain Research Bulletin | 2005

The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons.

Karin B. Zihlmann; Angélique Ducray; Benoit Schaller; Alexander W. Huber; Sandra H. Krebs; Robert H. Andres; Rolf W. Seiler; Morten Meyer; Hans Rudolf Widmer

Neurturin (NRTN), artemin (ARTN), persephin (PSPN) and glial cell line-derived neurotrophic factor (GDNF) form a group of neurotrophic factors, also known as the GDNF family ligands (GFLs). They signal through a receptor complex composed of a high-affinity ligand binding subunit, postulated ligand specific, and a common membrane-bound tyrosine kinase RET. Recently, also NCAM has been identified as an alternative signaling receptor. GFLs have been reported to promote survival of cultured dopaminergic neurons. In addition, GDNF treatments have been shown to increase morphological differentiation of tyrosine hydroxylase immunoreactive (TH-ir) neurons. The present comparative study investigated the dose-dependent effects of GFLs on survival and morphological differentiation of TH-ir neurons in primary cultures of E14 rat ventral mesencephalon. Both NRTN and ARTN chronically administered for 5 days significantly increased survival and morphological differentiation of TH-ir cells at all doses investigated [0.1-100 ng/ml], whereas PSPN was found to be slightly less potent with effects on TH-ir cell numbers and morphology at 1.6-100 ng/ml and 6.3-100 ng/ml, respectively. In conclusion, our findings identify NRTN, ARTN and PSPN as potent neurotrophic factors that may play an important role in the structural development and plasticity of ventral mesencephalic dopaminergic neurons.


Journal of Neurochemistry | 2005

Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue

Robert H. Andres; Angélique Ducray; Alexander W. Huber; Alberto Pérez-Bouza; Sandra H. Krebs; Uwe Schlattner; Rolf W. Seiler; Theo Wallimann; Hans Rudolf Widmer

Huntingtons disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA‐ergic medium‐sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA‐immunoreactive (‐ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short‐term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine‐mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen‐activated protein kinase and phosphatidylinositol‐3‐kinase significantly attenuated the creatine induced increase in GABA‐ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose‐ and serum deprivation or addition of 3‐nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.


Brain Research | 1998

Rat fetal ventral mesencephalon grown as solid tissue cultures: influence of culture time and BDNF treatment on dopamine neuron survival and function.

Günter U Höglinger; Jürgen Sautter; Morten Meyer; Christian Spenger; Rolf W. Seiler; Wolfgang H. Oertel; Hans Rudolf Widmer

Free-floating roller tube (FFRT) cultures of fetal rat and human nigral tissue are a means for tissue storage prior to grafting in experimental Parkinsons disease. In the present study, FFRT cultures prepared from embryonic-day-14 rat ventral mesencephalon were maintained for 4, 8, 12, or 16 days in vitro (DIV) in the presence or absence (controls) of BDNF [100 ng/ml]. The dopamine content in the culture medium, analyzed by HPLC, was significantly higher (4-5 fold) in the BDNF group at DIV 8 and DIV 12 compared to the corresponding control levels (40 pg/ml). The number of tyrosine hydroxylase immunoreactive neurons was significantly higher for BDNF treated cultures (2729+/-300) at DIV 8, as compared to controls (1679+/-217). At DIV 12, the culture volume was significantly increased by BDNF (1.05+/-0.12 vs. 0.71+/-0.04 mm3). Similar results were obtained for total protein. Western blot analysis demonstrated increasing signals for GFAP with increasing time in culture, but levels for control and BDNF treated cultures did not differ at any time-point investigated. In conclusion, it is suggested that the time window for effective storage of dopaminergic tissue prior to grafting can be extended by using the FFRT culture technique and that the in vitro storage may be further prolonged by treatment with BDNF.


Brain Research | 2006

GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon.

Angélique Ducray; Sandra H. Krebs; Benoit Schaller; Rolf W. Seiler; Morten Meyer; Hans Rudolf Widmer

Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinsons disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.


Cell Transplantation | 1999

GDNF increases the density of cells containing calbindin but not of cells containing calretinin in cultured rat and human fetal nigral tissue.

Morten Meyer; Jens Zimmer; Rolf W. Seiler; Hans Rudolf Widmer

Among the dopaminergic neurons in substantia nigra pars compacta and in the ventral tegmental area, subpopulations express the calcium-binding proteins calbindin (CB) and calretinin (CR), and the CB-containing neurons are supposed to be less prone to degeneration in Parkinsons disease. Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for nigrostriatal dopaminergic neurons. Using free-floating roller-tube (FFRT) cultures derived from fetal rat (E14) ventral mesencephalon we found that GDNF (10 ng/ml) significantly increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons. The possible effects of GDNF treatment on CB-immunoreactive (CB-ir) and CR-ir neurons in such cultures were examined in the present study. The neuronal cell densities were measured by quantifying the numbers of CB-ir and CR-ir neurons in areas of sections through the most extensive parts of the spherical cultures. In 4-day-old and 8-day-old cultures GDNF treatment increased the density of CB-ir neurons by 50% and 59%, respectively. Partial co-existence of TH and CB was shown using the method of double immunolabeling. The density of CR-containing neurons was unaffected by GDNF treatment as confirmed by Western blotting for CR. Parallel effects of GDNF treatment were obtained for cultures of human fetal ventral mesencephalon (8 weeks postconception). In conclusion, our findings identify GDNF as a potent factor for fetal rat and human nigral CB-ir neurons able to promote their survival in culture. Referring to a suggested neuroprotective role of CB, the results may be of relevance in the context of neuronal transplantation of patients suffering from severe Parkinsons disease.


Experimental Neurology | 2000

Glial Cell Line-Derived Neurotrophic Factor Stimulates the Morphological Differentiation of Cultured Ventral Mesencephalic Calbindin- and Calretinin-Expressing Neurons

Hans Rudolf Widmer; Benoit Schaller; Morten Meyer; Rolf W. Seiler

Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for mesencephalic dopaminergic neurons. Subpopulations of these neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Understanding the specific effects of GDNF on these neurons is important for the development of an optimal cell replacement therapy for Parkinsons disease. To investigate the effects of GDNF on the morphological complexity of mesencephalic tyrosine hydroxylase (TH)-immunoreactive (-ir), CB-ir, and CR-ir neurons, dissociated cultures of embryonic (E14) rat ventral mesencephalon were prepared. Chronic administration of GDNF (10 ng/ml) for 7 days promoted the survival of TH-ir and CB-ir neurons but did not alter the density of CR-ir neurons. Total fiber length/neuron and number of branching points/neuron of CB-ir and CR-ir cells were significantly increased after GDNF treatment (2x for CB-ir cells and 1.4x and 1.7x, respectively, for CR-ir cells), which resulted in a significantly larger size of neurite field/neuron (2.9x and 1.5x for CB-ir and CR-ir neurons, respectively). The number of primary neurites/neuron of CB-ir neurons was found to be 1.5x larger, while no difference could be detected for CR-ir cells. Assessment of the effects of GDNF on TH-ir neurons unveiled a similar outcome with an increased total fiber length/neuron (1.5x), an increased number of primary neurites/neuron (1.6x), and a twofold larger size of neurite field/neuron. In conclusion, our findings recognize GDNF as a neurotrophic factor that stimulates the morphological differentiation of ventral mesencephalic CB-ir and CR-ir neurons.

Collaboration


Dive into the Hans Rudolf Widmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morten Meyer

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge