Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Andres is active.

Publication


Featured researches published by Robert H. Andres.


Brain Research Bulletin | 2008

Functions and effects of creatine in the central nervous system

Robert H. Andres; Angélique Ducray; Uwe Schlattner; Theo Wallimann; Hans Rudolf Widmer

Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.


Brain | 2011

Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain

Robert H. Andres; Nobutaka Horie; William Slikker; Hadar Keren-Gill; Ke Zhan; Guohua Sun; Nathan C. Manley; Marta P. Pereira; Lamiya A. Sheikh; Erin McMillan; Bruce T. Schaar; Clive N. Svendsen; Tonya Bliss; Gary K. Steinberg

Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.


Neurobiology of Disease | 2010

Optimizing the success of cell transplantation therapy for stroke

Tonya Bliss; Robert H. Andres; Gary K. Steinberg

Stem cell transplantation has evolved as a promising experimental treatment approach for stroke. In this review, we address the major hurdles for successful translation from basic research into clinical applications and discuss possible strategies to overcome these issues. We summarize the results from present pre-clinical and clinical studies and focus on specific areas of current controversy and research: (i) the therapeutic time window for cell transplantation; (ii) the selection of patients likely to benefit from such a therapy; (iii) the optimal route of cell delivery to the ischemic brain; (iv) the most suitable cell types and sources; (v) the potential mechanisms of functional recovery after cell transplantation; and (vi) the development of imaging techniques to monitor cell therapy.


Nature Neuroscience | 2012

Neural progenitor cells regulate microglia functions and activity

Kira I. Mosher; Robert H. Andres; Takeshi Fukuhara; Gregor Bieri; Maiko Hasegawa-Moriyama; Yingbo He; Raphael Guzman; Tony Wyss-Coray

We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.


Stroke | 2010

Biodistribution of Neural Stem Cells After Intravascular Therapy for Hypoxic–Ischemia

Arjun V. Pendharkar; Josh Y. Chua; Robert H. Andres; Nancy E. Wang; Xavier Gaeta; Hui Wang; Abhijit De; Raymond Choi; Shawn Chen; Brian K. Rutt; Sanjiv S. Gambhir; Raphael Guzman

Background and Purpose— Intravascular transplantation of neural stem cells represents a minimally invasive therapeutic approach for the treatment of central nervous system diseases. The cellular biodistribution after intravascular injection needs to be analyzed to determine the ideal delivery modality. We studied the biodistribution and efficiency of targeted central nervous system delivery comparing intravenous and intra-arterial (IA) administration of neural stem cells after brain ischemia. Methods— Mouse neural stem cells were transduced with a firefly luciferase reporter gene for bioluminescence imaging (BLI). Hypoxic–ischemia was induced in adult mice and reporter neural stem cells were transplanted IA or intravenous at 24 hours after brain ischemia. In vivo BLI was used to track transplanted cells up to 2 weeks after transplantation and ex vivo BLI was used to determine single organ biodistribution. Results— Immediately after transplantation, BLI signal from the brain was 12 times higher in IA versus intravenous injected animals (P<0.0001). After IA injection, 69% of the total luciferase activity arose from the brain early after transplantation and 93% at 1 week. After intravenous injection, 94% of the BLI signal was detected in the lungs (P=0.004) followed by an overall 94% signal loss at 1 week, indicating lack of cell survival outside the brain. Ex vivo single organ analysis showed a significantly higher BLI signal in the brain than in the lungs, liver, and kidneys at 1 week (P<0.0001) and 2 weeks in IA (P=0.007). Conclusion— IA transplantation results in superior delivery and sustained presence of neural stem cells in the ischemic brain in comparison to intravenous infusion.


Neurosurgical Focus | 2008

Intravascular cell replacement therapy for stroke

Raphael Guzman; Raymond Choi; Atul Gera; Alejandro De Los Angeles; Robert H. Andres; Gary K. Steinberg

The use of stem cell transplantation to restore neurological function after stroke is being recognized as a potential novel therapy. Before stem cell transplantation can become widely applicable, however, questions remain about the optimal site of delivery and timing of transplantation. In particular, there seems to be increasing evidence that intravascular cell delivery after stroke is a viable alternative to intracerebral transplantation. In this review, the authors focus on the intravascular delivery of stem cells for stroke treatment with an emphasis on timing, transendothelial migration and possible mechanisms leading to neuroprotection, angiogenesis, immunomodulation, and neural plasticity. They also review current concepts of in vivo imaging and tracking of stem cells after stroke.


Stroke | 2011

The CCR2/CCL2 Interaction Mediates the Transendothelial Recruitment of Intravascularly Delivered Neural Stem Cells to the Ischemic Brain

Robert H. Andres; Raymond Choi; Arjun V. Pendharkar; Xavier Gaeta; Nancy E. Wang; Jaya K. Nathan; Joshua Y. Chua; Star W. Lee; Theo D. Palmer; Gary K. Steinberg; Raphael Guzman

Background and Purpose— The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia. Methods— Twenty-four hours after induction of stroke using the hypoxia-ischemia model in mice CCR2+/+ and CCR2−/− reporter NSC were intra-arterially delivered. Histology and bioluminescence imaging were used to investigate NSC homing to the ischemic brain. Functional outcome was assessed with the horizontal ladder test. Results— Using NSC isolated from CCR2+/+ and CCR2−/− mice, we show that receptor deficiency significantly impaired transendothelial diapedesis specifically in response to CCL2. Accordingly, wild-type NSC injected into CCL2−/− mice exhibited significantly decreased homing. Bioluminescence imaging showed robust recruitment of CCR2+/+ cells within 6 hours after transplantation in contrast to CCR2−/− cells. Mice receiving CCR2+/+ grafts after ischemic injury showed a significantly improved recovery of neurological deficits as compared to animals with transplantation of CCR2−/− NSC. Conclusions— The CCL2/CCR2 interaction is critical for transendothelial recruitment of intravascularly delivered NSC in response to ischemic injury. This finding could have significant implications in advancing minimally invasive intravascular therapeutics for regenerative medicine or cell-based drug delivery systems for central nervous system diseases.


Journal of Cerebral Blood Flow and Metabolism | 2011

Intra-Arterial Injection of Neural Stem Cells using a Microneedle Technique does not Cause Microembolic Strokes

Joshua Y. Chua; Arjun V. Pendharkar; Nancy E. Wang; Raymond Choi; Robert H. Andres; Xavier Gaeta; Jian Zhang; Michael E. Moseley; Raphael Guzman

Intra-arterial (IA) injection represents an experimental avenue for minimally invasive delivery of stem cells to the injured brain. It has however been reported that IA injection of stem cells carries the risk of reduction in cerebral blood flow (CBF) and microstrokes. Here we evaluate the safety of IA neural progenitor cell (NPC) delivery to the brain. Cerebral blood flow of rats was monitored during IA injection of single cell suspensions of NPCs after stroke. Animals received 1×106 NPCs either injected via a microneedle (microneedle group) into the patent common carotid artery (CCA) or via a catheter into the proximally ligated CCA (catheter group). Controls included saline-only injections and cell injections into non-stroked sham animals. Cerebral blood flow in the microneedle group remained at baseline, whereas in the catheter group a persistent (15 minutes) decrease to 78% of baseline occurred (P < 0.001). In non-stroked controls, NPCs injected via the catheter method resulted in higher levels of Iba-1-positive inflammatory cells (P = 0.003), higher numbers of degenerating neurons as seen in Fluoro-Jade C staining (P < 0.0001) and ischemic changes on diffusion weighted imaging. With an appropriate technique, reduction in CBF and microstrokes do not occur with IA transplantation of NPCs.


Neuroscience | 2005

Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue

Robert H. Andres; Alexander W. Huber; Uwe Schlattner; Alberto Pérez-Bouza; Sandra H. Krebs; Rolf W. Seiler; Theo Wallimann; Hans Rudolf Widmer

Parkinsons disease is a disabling neurodegenerative disorder of unknown etiology characterized by a predominant and progressive loss of dopaminergic neurons in the substantia nigra. Recent findings suggest that impaired energy metabolism plays an important role in the pathogenesis of this disorder. The endogenously occurring guanidino compound creatine is a substrate for mitochondrial and cytosolic creatine kinases. Creatine supplementation improves the function of the creatine kinase/phosphocreatine system by increasing cellular creatine and phosphocreatine levels and the rate of ATP resynthesis. In addition, mitochondrial creatine kinase together with high cytoplasmic creatine levels inhibit mitochondrial permeability transition, a major step in early apoptosis. In the present study, we analyzed the effects of externally added creatine on the survival and morphology of dopaminergic neurons and also addressed its neuroprotective properties in primary cultures of E14 rat ventral mesencephalon. Chronic administration of creatine [5 mM] for 7 days significantly increased survival (by 1.32-fold) and soma size (by 1.12-fold) of dopaminergic neurons, while having no effect on other investigated morphological parameters. Most importantly, concurrent creatine exerted significant neuroprotection for dopaminergic neurons against neurotoxic insults induced by serum and glucose deprivation (P < 0.01), 1-methyl-4-phenyl pyridinium ion (MPP+) [15 microM] and 6-hydroxydopamine (6-OHDA) [90 microM] exposure (P < 0.01). In addition, creatine treatment significantly protected dopaminergic cells facing MPP+-induced deterioration of neuronal morphology including overall process length/neuron (by 60%), number of branching points/neuron (by 80%) and area of influence per individual neuron (by 60%). Less pronounced effects on overall process length/neuron and number of branching points/neuron were also found after 6-OHDA exposure (P < 0.05) and serum/glucose deprivation (P < 0.05). In conclusion, our findings identify creatine as a rather potent natural survival- and neuroprotective factor for developing nigral dopaminergic neurons, which is of relevance for therapeutic approaches in Parkinsons disease and for the improvement of cell replacement strategies.


Brain Research Bulletin | 2005

The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons.

Karin B. Zihlmann; Angélique Ducray; Benoit Schaller; Alexander W. Huber; Sandra H. Krebs; Robert H. Andres; Rolf W. Seiler; Morten Meyer; Hans Rudolf Widmer

Neurturin (NRTN), artemin (ARTN), persephin (PSPN) and glial cell line-derived neurotrophic factor (GDNF) form a group of neurotrophic factors, also known as the GDNF family ligands (GFLs). They signal through a receptor complex composed of a high-affinity ligand binding subunit, postulated ligand specific, and a common membrane-bound tyrosine kinase RET. Recently, also NCAM has been identified as an alternative signaling receptor. GFLs have been reported to promote survival of cultured dopaminergic neurons. In addition, GDNF treatments have been shown to increase morphological differentiation of tyrosine hydroxylase immunoreactive (TH-ir) neurons. The present comparative study investigated the dose-dependent effects of GFLs on survival and morphological differentiation of TH-ir neurons in primary cultures of E14 rat ventral mesencephalon. Both NRTN and ARTN chronically administered for 5 days significantly increased survival and morphological differentiation of TH-ir cells at all doses investigated [0.1-100 ng/ml], whereas PSPN was found to be slightly less potent with effects on TH-ir cell numbers and morphology at 1.6-100 ng/ml and 6.3-100 ng/ml, respectively. In conclusion, our findings identify NRTN, ARTN and PSPN as potent neurotrophic factors that may play an important role in the structural development and plasticity of ventral mesencephalic dopaminergic neurons.

Collaboration


Dive into the Robert H. Andres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge