Hans-Stefan Bauer
University of Hohenheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans-Stefan Bauer.
Bulletin of the American Meteorological Society | 2008
Volker Wulfmeyer; Andreas Behrendt; Hans-Stefan Bauer; C. Kottmeier; U. Corsmeier; Alan M. Blyth; George C. Craig; Ulrich Schumann; Martin Hagen; Susanne Crewell; Paolo Di Girolamo; Cyrille Flamant; Mark A. Miller; A. Montani; S. D. Mobbs; Evelyne Richard; Mathias W. Rotach; Marco Arpagaus; H.W.J. Russchenberg; Peter Schlüssel; Marianne König; Volker Gärtner; Reinhold Steinacker; Manfred Dorninger; David D. Turner; Tammy M. Weckwerth; Andreas Hense; Clemens Simmer
Abstract The international field campaign called the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007 in southwestern Germany/eastern France. The overarching goal of COPS is to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. COPS was endorsed as one of the Research and Development Projects of the World Weather Research Program (WWRP), and combines the efforts of institutions and scientists from eight countries. A strong collaboration between instrument principal investigators and experts on mesoscale modeling has been established within COPS. In order to study the relative importance of large-scale and small-scale forcing leading to convection initiation in low mountains, COPS is coordinated with a one-year General Observations Period in central Europe, the WWRP Forecast Demonstration Project MAP D-PHASE, and the first summertime European THORPEX Regional...
Bulletin of the American Meteorological Society | 2009
Mathias W. Rotach; Paolo Ambrosetti; Felix Ament; Christof Appenzeller; Marco Arpagaus; Hans-Stefan Bauer; Andreas Behrendt; François Bouttier; Andrea Buzzi; Matteo Corazza; Silvio Davolio; Michael Denhard; Manfred Dorninger; Lionel Fontannaz; Jacqueline Frick; Felix Fundel; Urs Germann; Theresa Gorgas; Christiph Hegg; Aalessandro Hering; Christian Keil; Mark A. Liniger; Chiara Marsigli; Ron McTaggart-Cowan; Andrea Montaini; Ken Mylne; Roberto Ranzi; Evelyne Richard; Andrea Rossa; Daniel Santos-Muñoz
Demonstration of probabilistic hydrological and atmospheric simulation of flood events in the Alpine region (D-PHASE) is made by the Forecast Demonstration Project in connection with the Mesoscale Alpine Programme (MAP). Its focus lies in the end-to-end flood forecasting in a mountainous region such as the Alps and surrounding lower ranges. Its scope ranges from radar observations and atmospheric and hydrological modeling to the decision making by the civil protection agents. More than 30 atmospheric high-resolution deterministic and probabilistic models coupled to some seven hydrological models in various combinations provided real-time online information. This information was available for many different catchments across the Alps over a demonstration period of 6 months in summer/ fall 2007. The Web-based exchange platform additionally contained nowcasting information from various operational services and feedback channels for the forecasters and end users. D-PHASE applications include objective model verification and intercomparison, the assessment of (subjective) end user feedback, and evaluation of the overall gain from the coupling of the various components in the end-to-end forecasting system.
Climate Dynamics | 2013
Kirsten Warrach-Sagi; Thomas Schwitalla; Volker Wulfmeyer; Hans-Stefan Bauer
The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.
Monthly Weather Review | 2006
Volker Wulfmeyer; Hans-Stefan Bauer; Matthias Grzeschik; Andreas Behrendt; Francois Vandenberghe; Edward V. Browell; Syed Ismail; Richard A. Ferrare
Four-dimensional variational assimilation of water vapor differential absorption lidar (DIAL) data has been applied for investigating their impact on the initial water field for mesoscale weather forecasting. A case that was observed during the International H2O Project (IHOP_2002) has been selected. During 24 May 2002, data from the NASA Lidar Atmospheric Sensing Experiment were available upstream of a convective system that formed later along the dryline and a cold front. Tools were developed for routinely assimilating water vapor DIAL data into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The results demonstrate a large impact on the initial water vapor field. This is due to the high resolution and accuracy of DIAL data making the observation of the high spatial variability of humidity in the region of the dryline and of the cold front possible. The water vapor field is mainly adjusted by a modification of the atmospheric wind field changing the moisture transport. A positive impact of the improved initial fields on the spatial/temporal prediction of convective initiation is visible. The results demonstrate the high value of accurate, vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.
Journal of Atmospheric and Oceanic Technology | 2007
Andreas Behrendt; Volker Wulfmeyer; Paolo Di Girolamo; Christoph Kiemle; Hans-Stefan Bauer; Thorsten Schaberl; Donato Summa; David N. Whiteman; Belay Demoz; Edward V. Browell; Syed Ismail; Richard A. Ferrare; Susan A. Kooi; Gerhard Ehret; Junhong Wang; Nasa Gsfc
Abstract The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum fur Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% ...
Environmental Earth Sciences | 2014
Carolin Helbig; Hans-Stefan Bauer; Karsten Rink; Volker Wulfmeyer; Michael Frank; Olaf Kolditz
In the future, climate change will strongly influence our environment and living conditions. Weather and Climate simulations that predict possible changes produce big data sets. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. In this paper, the results of the Weather Research and Forecasting model are visualized for two regions. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to 3D visualizations that can be displayed on a desktop computer or in an interactive virtual reality environment is developed. These easy-to-understand visualizations of complex data are the basis for scientific communication and for the evaluation and verification of models as well as for interdisciplinary discussions of the research results.
Bulletin of the American Meteorological Society | 2005
Volker Wulfmeyer; Andreas Behrendt; Hans-Stefan Bauer; C. Kottmeier; U. Corsmeier; Alan M. Blyth; George C. Craig; Ulrich Schumann; Martin Hagen; S. Crewell; P. Di Girolamo; Cyrille Flamant; Mark A. Miller; A. Montani; S. D. Mobbs; Evelyne Richard; Mathias W. Rotach; Marco Arpagaus; H.W.J. Russchenberg; Peter Schlüssel; Marianne König; Volker Gärtner; Reinhold Steinacker; Manfred Dorninger; David D. Turner; Tammy M. Weckwerth; Andreas Hense; Clemens Simmer
Abstract The international field campaign called the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007 in southwestern Germany/eastern France. The overarching goal of COPS is to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. COPS was endorsed as one of the Research and Development Projects of the World Weather Research Program (WWRP), and combines the efforts of institutions and scientists from eight countries. A strong collaboration between instrument principal investigators and experts on mesoscale modeling has been established within COPS. In order to study the relative importance of large-scale and small-scale forcing leading to convection initiation in low mountains, COPS is coordinated with a one-year General Observations Period in central Europe, the WWRP Forecast Demonstration Project MAP D-PHASE, and the first summertime European THORPEX Regional...
Journal of Atmospheric and Oceanic Technology | 2007
Andreas Behrendt; Volker Wulfmeyer; Thorsten Schaberl; Hans-Stefan Bauer; Christoph Kiemle; Gerhard Ehret; Cyrille Flamant; Susan A. Kooi; Syed Ismail; Richard A. Ferrare; Edward V. Browell; David N. Whiteman
Abstract The dataset of the International H2O Project (IHOP_2002) gives the first opportunity for direct intercomparisons of airborne water vapor lidar systems and allows very important conclusions to be drawn for future field campaigns. Three airborne differential absorption lidar (DIAL) systems were operated simultaneously during some IHOP_2002 missions: the DIAL of Deutsches Zentrum fur Luft- und Raumfahrt (DLR), the Lidar Atmospheric Sensing Experiment (LASE) of the National Aeronautics and Space Administration (NASA) Langley Research Center, and the Lidar Embarque pour l’etude des Aerosols et des Nuages de l’interaction Dynamique Rayonnement et du cycle de l’Eau (LEANDRE II) of the Centre National de la Recherche Scientifique (CNRS). Data of one formation flight with DLR DIAL and LEANDRE II were investigated, which consists of 54 independent profiles of the two instruments measured with 10-s temporal average. For the height range of 1.14–1.64 km above sea level, a bias of (−0.41 ± 0.16) g kg−1 or −7....
Bulletin of the American Meteorological Society | 2008
Volker Wulfmeyer; Andreas Behrendt; Hans-Stefan Bauer; C. Kottmeier; U. Corsmeier; Alan M. Blyth; George C. Craig; Ulrich Schumann; Martin Hagen; Susanne Crewell; Paolo Di Girolamo; Cyrille Flamant; Mark A. Miller; A. Montani; S. D. Mobbs; Evelyne Richard; Mathias W. Rotach; Marco Arpagaus; H.W.J. Russchenberg; Peter Schlüssel; Marianne König; Volker Gärtner; Reinhold Steinacker; Manfred Dorninger; David D. Turner; Tammy M. Weckwerth; Andreas Hense; Clemens Simmer
Abstract The international field campaign called the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007 in southwestern Germany/eastern France. The overarching goal of COPS is to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. COPS was endorsed as one of the Research and Development Projects of the World Weather Research Program (WWRP), and combines the efforts of institutions and scientists from eight countries. A strong collaboration between instrument principal investigators and experts on mesoscale modeling has been established within COPS. In order to study the relative importance of large-scale and small-scale forcing leading to convection initiation in low mountains, COPS is coordinated with a one-year General Observations Period in central Europe, the WWRP Forecast Demonstration Project MAP D-PHASE, and the first summertime European THORPEX Regional...
Journal of Atmospheric and Oceanic Technology | 2008
Matthias Grzeschik; Hans-Stefan Bauer; Volker Wulfmeyer; Dirk Engelbart; Ulla Wandinger; Ina Mattis; D. Althausen; Ronny Engelmann; Matthias Tesche; Andrea Riede
Abstract The impact of water vapor observations on mesoscale initial fields provided by a triangle of Raman lidar systems covering an area of about 200 km × 200 km is investigated. A test case during the Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH-2005) was chosen. Evaluation of initial water vapor fields derived from ECMWF analysis revealed that in the model the highly variable vertical structure of water vapor profiles was not recovered and vertical gradients were smoothed out. Using a 3-h data assimilation window and a resolution of 10–30 min, continuous water vapor data from these observations were assimilated in the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) by means of a four-dimensional variational data analysis (4DVAR). A strong correction of the vertical structure and the absolute values of the initial water vapor field of the order of 1 g kg−1 was found. This occurred mainly upstream ...