Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanshuang Shao is active.

Publication


Featured researches published by Hanshuang Shao.


Molecular and Cellular Biology | 2006

Spatial localization of m-calpain to the plasma membrane by phosphoinositide biphosphate binding during epidermal growth factor receptor-mediated activation.

Hanshuang Shao; Jeff Chou; Catherine J. Baty; Nancy A. Burke; Simon Watkins; Donna B. Stolz; Alan Wells

ABSTRACT Calpain activity is required for de-adhesion of the cell body and rear to enable productive locomotion of adherent cells during wound repair and tumor invasion. Growth factors activate m-calpain (calpain 2, CAPN2) via ERK/mitogen-activated protein kinases, but only when these kinases are localized to the plasma membrane. We thus hypothesized that m-calpain is activated by epidermal growth factor (EGF) only when it is juxtaposed to the plasma membrane secondary to specific docking. Osmotic disruption of NR6 fibroblasts expressing the EGF receptor demonstrated m-calpain being complexed with the substratum-adherent membrane with this increasing in an EGF-dependent manner. m-Calpain colocalized with phosphoinositide biphosphate (PIP2) with exogenous phospholipase C removal of phosphoinositides, specifically, PI(4,5)P2 but not PI(4)P1 or PIP3, releasing the bound m-calpain. Downregulation of phosphoinositide production by 1-butanol resulted in diminished PIP2 in the plasma membrane and eliminated EGF-induced calpain activation. This PIP2-binding capacity resided in domain III of calpain, which presents a putative C2-like domain. This active conformation of this domain appears to be partially masked in the holoenzyme as both activation of m-calpain by phosphorylation at serine 50 and expression of constitutively active phosphorylation mimic glutamic acid-increased m-calpain binding to the membrane, consistent with blockade of this cascade diminishing membrane association. Importantly, we found that m-calpain was enriched toward the rear of locomoting cells, which was more pronounced in the plasma membrane footprints; EGF further enhanced this enrichment, in line with earlier reports of loss of PIP2 in lamellipodia of motile cells. These data support a model of m-calpain binding to PIP2 concurrent with and likely to enable ERK activation and provides a mechanism by which cell de-adhesion is directed to the cell body and tail as phospholipase C-γ hydrolyzes PIP2 in the protruding lamellipodia.


Journal of Biological Chemistry | 2010

m-calpain Activation Is Regulated by Its Membrane Localization and by Its Binding to Phosphatidylinositol 4,5-Bisphosphate

Ludovic Leloup; Hanshuang Shao; Yong Ho Bae; Bridget M. Deasy; Donna B. Stolz; Partha Roy; Alan Wells

m-calpain plays a critical role in cell migration enabling rear de-adhesion of adherent cells by cleaving structural components of the adhesion plaques. Growth factors and chemokines regulate keratinocyte, fibroblast, and endothelial cell migration by modulating m-calpain activity. Growth factor receptors activate m-calpain secondary to phosphorylation on serine 50 by ERK. Concurrently, activated m-calpain is localized to its inner membrane milieu by binding to phosphatidylinositol 4,5-bisphosphate (PIP2). Opposing this, CXCR3 ligands inhibit cell migration by blocking m-calpain activity secondary to a PKA-mediated phosphorylation in the C2-like domain. The failure of m-calpain activation in the absence of PIP2 points to a key regulatory role, although whether this PIP2-mediated membrane localization is regulatory for m-calpain activity or merely serves as a docking site for ERK phosphorylation is uncertain. Herein, we report the effects of two CXCR3 ligands, CXCL11/IP-9/I-TAC and CXCL10/IP-10, on the EGF- and VEGF-induced redistribution of m-calpain in human fibroblasts and endothelial cells. The two chemokines block the tail retraction and, thus, the migration within minutes, preventing and reverting growth factor-induced relocalization of m-calpain to the plasma membrane of the cells. PKA phosphorylation of m-calpain blocks the binding of the protease to PIP2. Unexpectedly, we found that this was due to membrane anchorage itself and not merely serine 50 phosphorylation, as the farnesylation-induced anchorage of m-calpain triggers a strong activation of this protease, leading notably to an increased cell death. Moreover, the ERK and PKA phosphorylations have no effect on this membrane-anchored m-calpain. However, the presence of PIP2 is still required for the activation of the anchored m-calpain. In conclusion, we describe a novel mechanism of m-calpain activation by interaction with the plasma membrane and PIP2 specifically, this phosphoinositide acting as a cofactor for the enzyme. The phosphorylation of m-calpain by ERK and PKA by growth factors and chemokines, respectively, act in cells to regulate the enzyme only indirectly by controlling its redistribution.


PLOS ONE | 2010

α-actinin-4 is essential for maintaining the spreading, motility and contractility of fibroblasts.

Hanshuang Shao; James H.-C. Wang; Martin R. Pollak; Alan Wells

Background α-Actinins cross-link actin filaments, with this cross-linking activity regulating the formation of focal adhesions, intracellular tension, and cell migration. Most non-muscle cells such as fibroblasts express two isoforms, α-actinin-1 (ACTN1) and α-actinin-4 (ACTN4). The high homology between these two isoforms would suggest redundancy of their function, but recent studies have suggested different regulatory roles. Interestingly, ACTN4 is phosphorylated upon growth factor stimulation, and this loosens its interaction with actin. Methodology/Principal Findings Using molecular, biochemical and cellular techniques, we probed the cellular functions of ACTN4 in fibroblasts. Knockdown of ACTN4 expression in murine lung fibroblasts significantly impaired cell migration, spreading, adhesion, and proliferation. Surprisingly, knockdown of ACTN4 enhanced cellular compaction and contraction force, and increased cellular and nuclear cross-sectional area. These results, except the increased contractility, are consistent with a putative role of ACTN4 in cytokinesis. For the transcellular tension, knockdown of ACTN4 significantly increased the expression of myosin light chain 2, a element of the contractility machinery. Re-expression of wild type human ACTN4 in ACTN4 knockdown murine lung fibroblasts reverted cell spreading, cellular and nuclear cross-sectional area, and contractility back towards baseline, demonstrating that the defect was due to absence of ACTN4. Significance These results suggest that ACTN4 is essential for maintaining normal spreading, motility, cellular and nuclear cross-sectional area, and contractility of murine lung fibroblasts by maintaining the balance between transcellular contractility and cell-substratum adhesion.


Journal of Biological Chemistry | 2010

Phosphorylation of α-Actinin 4 upon Epidermal Growth Factor Exposure Regulates Its Interaction with Actin

Hanshuang Shao; Chuanyue Wu; Alan Wells

The ubiquitously expressed family of α-actinins bridges actin filaments to stabilize adhesions, a process disrupted during growth factor-induced migration of cells. During the dissolution of the actin cytoskeleton, actinins are phosphorylated on tyrosines, although the consequences of this are unknown. We expressed the two isoforms of human α-actinin in murine fibroblasts that express human epidermal growth factor receptor (EGFR) and found that both α-actinin 1 (ACTN1) and α-actinin 4 (ACTN4) were phosphorylated on tyrosine residues after stimulation with EGF, although ACTN4 was phosphorylated to the greater extent. This required the activation of Src protein-tyrosine kinase and p38-MAPK (and phosphoinositide trisphosphate kinase in part) but not MEK/ERK or Rac1, as determined by inhibitors. The EGF-induced phosphorylation sites of ACTN4 were mapped to tyrosine 4, the major site, and tyrosine 31, the minor one. Truncation mutagenesis showed that the C-terminal domains of ACTN4 (amino acids 300–911), which cross-link the actin binding head domains, act as an inhibitory domain for both actin binding and EGF-mediated phosphorylation. These two properties were mutually exclusive; removal of the C terminus enhanced actin binding of ACTN4 mutants while limiting EGF-induced phosphorylation, and conversely EGF-stimulated phosphorylation of ACTN4 decreased its affinity to actin. Interestingly, a phosphomimetic of tyrosine 265 (which can be found in carcinoma cells and lies near the K255E mutation that causes focal segmental glomerulosclerosis) demonstrated increased actin binding activity and susceptibility of ACTN4 to calpain-mediated cleavage; this variant also retarded cell spreading. Remarkably, either treatment of cells with low concentrations of latrunculin A, which has been shown to depolymerize F-actin, or the deletion of the actin binding domain (100–252 amino acids) of ACTN4Y265E restored EGF-induced phosphorylation. An F-actin binding assay in vitro showed that Y4E/Y31E, a mimetic of diphosphorylated ACTN4, bound F-actin slightly compared with wild type (WT). Importantly, the EGF-mediated phosphorylation of ACTN4 at tyrosine 4 and 31 significantly inhibited multinucleation of proliferating NR6WT fibroblasts that overexpress ACTN4. These results suggest that EGF regulates the actin binding activity of ACTN4 by inducing tyrosyl-directed phosphorylation.


Journal of Biological Chemistry | 2014

α-Actinin-4 is required for amoeboid-type invasiveness of melanoma cells.

Hanshuang Shao; Shaoyan Li; Simon C. Watkins; Alan Wells

Background: Melanoma cells invasion through the dermis directly correlates with death, defining migration as critical. Results: ACTN4 down-regulation limits aggressive melanoma cells to a mesenchymal phenotype that retards collagen I matrix invasiveness. Conclusion: Amoeboidal morphology necessary for melanoma invasion requires ACTN4. Significance: This finding provides for a role of ACTN4 in melanoma invasion and implicates a linkage between actin cytoskeleton and melanoma progression. α-Actinin-4 (ACTN4), a key regulator of the actin cytoskeleton, is up-regulated in melanoma, though its role in melanoma remains speculative. We have discovered that in WM1158, a highly aggressive melanoma cell line, down-regulation of ACTN4 by shRNA induces a collagen I-dependent amoeboidal-to-mesenchymal transition. Re-expression of low levels of WT ACTN4 but not similar expression levels of ACTN1 successfully restores the amoeboidal morphology and limits collagen I gel compaction. A truncated ACTN4 mutant 1–890, which lacks the C-terminal tail, fails to rescue the amoeboidal morphology and to compact collagen I gel. Interestingly, in three-dimensional collagen I gels, ACTN4 KD cells are more polarized compared with cells in which scrambled shRNA is expressed. Surprisingly, ACTN4 KD cells migrate faster than the ones expressing the scrambled shRNA on a collagen I gel (two-dimensional) although these two cell lines migrate similarly on tissue culture. Most importantly, down-regulation of ACTN4 significantly reduced invasion of WM1158 cells into the three-dimensional collagen I gel, a representative of the dermis. Taken together, these findings suggest that ACTN4 plays an important role in maintaining the amoeboidal morphology of invasive melanoma and thus promoting dissemination through collagen-rich matrices.


BMC Cancer | 2016

Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

Min Yang; Bo Ma; Hanshuang Shao; Amanda M. Clark; Alan Wells

BackgroundMetastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment.MethodsHere we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages.ResultsWe found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells.ConclusionOur findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.


Biophysical Journal | 2013

Modeling the Assembly of the Multiple Domains of α-actinin-4 and Its Role in Actin Cross-linking

Timothy Travers; Hanshuang Shao; Alan Wells; Carlos J. Camacho

The assembly of proteins into multidomain complexes is critical for their function. In eukaryotic nonmuscle cells, regulation of the homodimeric actin cross-linking protein α-actinin-4 (ACTN4) during cell migration involves signaling receptors with intrinsic tyrosine kinase activity, yet the underlying molecular mechanisms are poorly understood. As a first step to address the latter, we validate here an atomic model for the ACTN4 end region, which corresponds to a ternary complex between the N-terminal actin-binding domain (ABD) and an adjacent helical neck region of one monomer, and the C-terminal calmodulin-like domain of the opposite antiparallel monomer. Mutagenesis experiments designed to disrupt this ternary complex confirm that its formation reduces binding to F-actin. Molecular dynamics simulations show that the phosphomimic mutation Y265E increases actin binding by breaking several interactions that tether the two calponin homology domains into a closed ABD conformation. Simulations also show a disorder-to-order transition in the double phosphomimic mutant Y4E/Y31E of the 45-residue ACTN4 N-terminal region, which can inhibit actin binding by latching both calponin homology domains more tightly. Collectively, these studies provide a starting point for understanding the role of external cues in regulating ACTN4, with different phenotypes resulting from changes in the multidomain assembly of the protein.


The International Journal of Biochemistry & Cell Biology | 2013

The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading

Hanshuang Shao; Timothy Travers; Carlos J. Camacho; Alan Wells

Alpha-actinin-4 links the cytoskeleton to sites of adhesion and has been shown to be modulated to enable cell migration. Such focal adhesions must be labile to accomplish migration, with this detachment occurring at least in part via m-calpain activation (Glading et al., 2001, 2002; Xie et al., 1998). In this study, we report that alpha-actinin-4 is initially cleaved by m-calpain between tyrosine 13 and glycine. Removal of the first 13 amino acids does not affect alpha-actinin-4 binding to actin filaments and its localization within fibroblasts but drives cell migration with less persistence. Binding of phosphoinositides PI(4,5)P2, PI(3,4,5)P3 and PI(3,4)P2 to alpha-actinin-4, as well as binding of alpha-actinin-4 to actin filaments all inhibit m-calpain cleavage of ACTN4 between tyrosine 13 and glycine 14. Interestingly, the carboxyl terminus of alpha-actinin-4 including its calcium binding motifs, is inhibitory for a secondary cleavage of alpha-actinin-4 between lysine 283 and valine 284. The minimal length of inhibitory domain is mapped to the last 11 amino acids of alpha-actinin-4. The C-terminal tail of alpha-actinin-4 is essential for maintaining its normal actin binding activity and localization within cytoplasm and also its colocalization with actin in the lamellipodia of locomoting fibroblasts. Live cell imaging reveals that the 1-890 fragment fails to rescue neither the basal or growth factor-stimulated migration nor the revert the spread area of fibroblasts to the level of NR6WT. These findings suggest that the C-terminal tail of alpha-actinin-4 is essential for its function in cell migration and adhesion to substratum.


Wound Repair and Regeneration | 2008

Epidermal growth factor protects fibroblasts from apoptosis via PI3 kinase and Rac signaling pathways

Hanshuang Shao; Xiao-Ming Yi; Alan Wells

The fibroplasia noted during wound repair is resolved by fibroblast cell death. How fibroblasts undergo death and how this is prevented by trophic growth factors present during the regenerative phase are unknown at the molecular level. We examined a model of staurosporine‐induced apoptosis in fibroblasts. We demonstrated that epidermal growth factor (EGF) stimulation of fibroblast NR6WT expressing human EGF receptors blocks staurosporine‐induced apoptosis by inhibiting the activation of caspase‐3. The survival effect of EGF on rescuing apoptotic NR6WT involves signaling pathways that derive from PI3K and Rac; the blockade of apoptosis is abolished when PI3K and Rac signals are inhibited simultaneously. Furthermore, by using KP372‐1, a specific Akt inhibitor, we found that downstream of Akt signaling pathways is absolutely required for the EGF rescue from staurosporine‐induced apoptosis in NR6WT. Interestingly, EGF prevention of apoptosis induced by tumor necrosis factor‐α in the face of cycloheximide blockade of protein translation occurs via a different set of pathways as the simultaneous inhibition of extracellular signal‐regulated kinase, Rac, and PI3K signaling did not eliminate EGF from rescuing fibroblasts in the face of this cytokine. These findings indicate that EGF receptor activation provides survival response against staurosporine‐induced apoptosis through signal pathways of PI3K and Rac, which then may prevent the activation of caspase‐3.


Science Signaling | 2015

Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function

Timothy Travers; Hanshuang Shao; Brian A. Joughin; Douglas A. Lauffenburger; Alan Wells; Carlos J. Camacho

Phosphorylation of a tyrosine in the disordered N-terminal region of ACTN4 functions as a switch exposing a second site for phosphorylation. Flipping the phosphorylation switch How does phosphorylation of a protein at one site regulate phosphorylation of a second site? Travers et al. identified distinct roles for tandem phosphorylation sites in an intrinsically disordered region of α-actinin-4 (ACTN4). Molecular dynamics simulations, validated by experimental observations, indicated that phosphorylation on Tyr4 increased the accessibility of Tyr31 and thus phosphorylation of this site, which reduced ACTN4 binding to actin. Thus, the first site functioned as a switch that enabled phosphorylation at the second site, which controlled binding to actin. Tandem-site phosphorylation may be a mechanism by which spatiotemporal regulation of protein function evolved. The kinase for the first site may only be present or active at restricted locations or times, whereas the kinase for the second site may be constitutively active or ubiquitous, may have a loose consensus motif, or may be the same as the kinase for the first site, but has different kinetics for the second site. Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered amino-terminal region of human α-actinin-4 (ACTN4), Tyr4 and Tyr31 are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr4 site. We found that introducing a phosphomimetic mutation at only Tyr31 was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr31 is mostly buried and that phosphorylation of Tyr4 would increase the solvent exposure and thus kinase accessibility of Tyr31. In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr4, whereas a truncated mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at a background amount similar to that observed for a double phosphomimetic mutant of Tyr4 and Tyr31. We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr31 can be dictated by the kinase affinity for Tyr4. This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site.

Collaboration


Dive into the Hanshuang Shao's collaboration.

Top Co-Authors

Avatar

Alan Wells

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Lauffenburger

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ludovic Leloup

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Wang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Bo Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Brian A. Joughin

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge