Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanwen Zhang is active.

Publication


Featured researches published by Hanwen Zhang.


Oncology Reports | 2015

The anticancer effect of Huaier (Review)

Xiaojin Song; Yaming Li; Hanwen Zhang; Qifeng Yang

Trametes robiniophila Murr. (Huaier) is a sandy beige mushroom found on the trunks of trees and has been widely used in traditional Chinese medicine (TCM) for ~1,600 years. The anticancer effects of Huaier have attracted increasing worldwide interest in recent years. Accumulating evidence suggests that the anticancer mechanism of Huaier may be associated with various biological activities, such as inhibition of cell proliferation, anti-metastasis, interference with tumor angiogenesis and tumor-specific immunomodulatory effect. Animal and experimental studies suggest that Huaier is a promising anticancer agent. Further clinical research is warranted to illustrate the untapped chemopreventive and therapeutic potential of Huaier either alone or in conjunction with existing therapies.


Scientific Reports | 2016

Huaier extract suppresses breast cancer via regulating tumor-associated macrophages.

Yaming Li; Wenwen Qi; Xiaojin Song; Shangge Lv; Hanwen Zhang; Qifeng Yang

Macrophages in tumor microenvironment are mostly M2-polarized - and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). Here, we examined the regulatory effects of Huaier extract on TAMs using RAW264.7 murine macrophage cell line. Our data demonstrated that Huaier extract could inhibit the infiltration of macrophages into tumor microenvironment in a dose-dependent manner. By performing RT-PCR, immunofluorescence and phagocytosis assay, we were able to find that Huaier extract could regulate the polarization of macrophages, with decreased M2-polarization and increased phagocytosis of RAW264.7 cells. Moreover, we identified that Huaier extract could suppress macrophages-induced angiogenesis by using HUVEC migration assay, tube formation and chorioallantoic membrane assay. Additionally, western blotting showed decreased expression of MMP2, MMP9 and VEGF with the use of Huaier extract. Finally, we found that Huaier extract could inhibit M2-macrophages infiltration and angiogenesis through treating 4T1 tumor bearing mice with Huaier extract. Our study revealed a novel mechanism of the anti-tumor effect of Huaier extract which inhibited angiogenesis by targeting TAMs. These findings provided that Huaier was a promising drug for clinical treatment of breast cancer.


Cell & Bioscience | 2016

Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells

Mingjuan Sun; Ning Zhang; Xiaolong Wang; Yaming Li; Wenwen Qi; Hanwen Zhang; Zengjun Li; Qifeng Yang

BackgroundThe complications of clinical metastatic disease are responsible for the majority of breast cancer related deaths, and fewer therapies substantially prolong survival. Nitidine chloride (NC), a natural polyphenolic compound, has been shown to exhibit potent anticancer effects in many cancer types, including breast cancer. The epithelial-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs)-like properties emerge as critical steps in the metastasis of human cancers. However, the effects of NC on the EMT and the CSCs-like properties in breast cancer cells, and the underlying molecular mechanisms are not fully understood.ResultsIn the present study, MDA-MB-468 and MCF-7 cancer cells were treated with NC. Scratch and Transwell assays were performed to determine whether NC could attenuate the migratory and invasive capability of cancer cells; Mammosphere formation and flow cytometry analysis were performed to confirm that NC decreased CSCs-like phenotype; RT-PCR and western blot analysis were used to examine the expression level of EMT and CSC related markers in both cells. Mechanistically, NC could inhibit the components of Hedgehog pathway (smoothened, patched, Gli1 and Gli2), subsequently inhibited the expression of Snail, Slug and Zeb1, which were correlated with the significant changes of the expression of EMT related markers (N-cadherin, E-cadherin, and Vimentin) to reverse EMT. On the other hand, NC could also inhibit the expression of CSCs related factors such as Nanog, Nestin, Oct-4 and CD44 via Hedgehog pathway. Furthermore, transforming growth factor-β1 (TGF-β1)-induced increment of EMT and CSCs properties could be reversed by NC.ConclusionsTaken together, these data indicated that NC suppressed breast cancer EMT and CSCs-like properties through inhibiting Hedgehog signaling pathway. Our study suggested that NC may be a potential anticancer agent for breast cancer.


Cancer Biology & Therapy | 2018

Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer

Yiran Liang; Yaming Li; Xiaojin Song; Ning Zhang; Yuting Sang; Hanwen Zhang; Ying Liu; Bing Chen; Wenjing Zhao; Lijuan Wang; Renbo Guo; Zhigang Yu; Qifeng Yang

ABSTRACT Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in a number of biological processes; however, further study is still warranted to comprehensively reveal their functions. In this study, we showed that the lncRNA in non-homologous end joining (NHEJ) pathway 1 (LINP1) was related to breast cancer cell proliferation, metastasis and chemoresistance. Loss- and gain-of function studies were used to assess the role of LINP1 in promoting breast cancer progression. LINP1 knockdown mitigated breast cancer cell growth by inducing G1-phase cell cycle arrest and apoptosis. LINP1 also promoted breast cancer cell metastasis and influenced the expression of epithelial-mesenchymal transition-related markers. We identified p53 as a regulator of LINP1, and LINP1 overexpression could restore the metastatic effects of p53. Furthermore, LINP1 was upregulated in doxorubicin- and 5-fluorouracil-resistant cells and induced chemoresistance. We also observed that LINP1 enrichment played a critical functional role in chemoresistance by inhibiting chemotherapeutics-induced apoptosis. Moreover, LINP1 in tumors was associated with lower overall survival and disease-free survival. In conclusion, LINP1 may serve as a potential oncogene and chemoresistance-related regulator of breast cancer cells, suggesting that LINP1 might be a potent therapeutic target and might reduce chemoresistance in breast cancer.


Cell Death and Disease | 2018

A novel long non-coding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer

Yiran Liang; Xiaojin Song; Yaming Li; Yuting Sang; Ning Zhang; Hanwen Zhang; Ying Liu; Yi Duan; Bing Chen; Renbo Guo; Wenjing Zhao; Lijuan Wang; Qifeng Yang

Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in cancerous processes as either oncogenes or tumor suppressor genes. Here, we demonstrated that lncRNA-PRLB (progression-associated lncRNA in breast cancer) was upregulated in human breast cancer tissues and breast cancer cell lines. Further evaluation verified that lncRNA-PRLB was positively correlated with the extent of metastasis, and its expression was correlated with shorter survival time of breast cancer patients. We identified microRNA miR-4766-5p as an inhibitory target of lncRNA-PRLB. Both lncRNA-PRLB overexpression and miR-4766-5p knockdown could remarkably enhance cell growth, metastasis, and chemoresistance. We also determined that sirtuin 1 (SIRT1) was an inhibitory target of miR-4766-5p, and that SIRT1 was inhibited by both lncRNA-PRLB knockdown and miR-4766-5p overexpression. Significantly, we found that the promotion of cell proliferation and metastasis, the acquisition of chemoresistance, and the increased expression of SIRT1 induced by lncRNA-PRLB overexpression could be partly abrogated by ectopic expression of miR-4766-5p. Taken together, our findings indicated that lncRNA could regulate the progression and chemoresistance of breast cancer via modulating the expression levels of miR-4766-5p and SIRT1, which may have a pivotal role in breast cancer treatment and prognosis prediction.


Oncotarget | 2017

Dose invasive apocrine adenocarcinoma has worse prognosis than invasive ductal carcinoma of breast: evidence from SEER database

Ning Zhang; Hanwen Zhang; Tong Chen; Qifeng Yang

Background Invasive apocrine adenocarcinoma (AAC) of breast is a rare histopathological subtype of breast carcinomas. We aim to investigate the different characteristics and prognostic outcomes between AAC and invasive ductal carcinoma (IDC) of breast cancer. RESULTS AAC patients presented with older ages, more aggressive behaviors, lower ER and PR proportions, higher HER2 amplification rates and less application of breast-conserving therapy and adjuvant chemotherapy compared to IDC patients. Long-term OS and DSS were both worse in ACC patients (p = 0.006, p = 0.012 respectively) than in IDC patients by Kaplan-Meier analysis. However, no significant difference was detected in DSS (p = 0.181) and OS (p = 0.116) between the matched two histological subtypes. Further subgroup analysis indicated that AJCC stage, ER status, PR status and HER2 status may be principal confounders for AAC prognosis. Materials and Methods With accession to the Surveillance, Epidemiology and End Result (SEER) database, a total of 260,596 patients met the eligibility criteria. Clinicopathological characteristics were compared between groups using Chi-square test. Univariate and multivariate analyses were applied to evaluate the overall survival (OS) and disease-specific survival (DSS). Subgroup analyses summarized the hazard ratio (HR) of AAC versus IDC using a forest plot. Conclusions AAC had unique clinicopathological characteristics and it tended to be a more aggressive type than IDC. However, the worse prognosis was diminished after matching for demographic and clinicopathological factors. Deeper insights into AAC are in need to contribute to individualized and tailored therapy, which thereby may improve clinical management and outcomes.


Cell Death and Disease | 2018

MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1

Yaming Li; Yiran Liang; Yuting Sang; Xiaojin Song; Hanwen Zhang; Ying Liu; Liyu Jiang; Qifeng Yang

Chemo-resistance and metastasis of triple negative breast cancer (TNBC) contributed the most of treatment failure in the clinic. MicroRNAs (miRNAs) have been proved to be involved in many biological processes and diseases. In this study, we aimed to determine the role of miR-770 in the regulation of chemo-resistance and metastasis of TNBC. Clinically, miR-770 was highly expressed in chemo-sensitive tissues and predicted a better prognosis of TNBC. Functionally, ectopic expression of miR-770 suppressed the doxorubicin-resistance of TNBC cell lines via regulation of apoptosis and tumor microenvironment, which was mediated by exosomes. Moreover, miR-770 overexpression inhibited the migration and invasion. Rescue of STMN1 could partly reverse the effect of miR-770 in TNBC behaviors. Furthermore, we also demonstrated that overexpression of miR-770 inhibited DOX resistance and metastasis in vivo. Taken together, our results proved that miR-770 could suppress the doxorubicin-resistance and metastasis of TNBC cells, which broaden our insights into the underlying mechanisms in chemo-resistance and metastasis, and provided a new prognostic marker for TNBC cells.


Journal of Cellular Physiology | 2018

LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215: KONG et al.

Xiaoli Kong; Yi Duan; Yuting Sang; Yaming Li; Hanwen Zhang; Yiran Liang; Ying Liu; Ning Zhang; Qifeng Yang

Rapid proliferation and metastasis of breast cancers resulted in poor prognosis in clinic. Recent studies have proved that long noncoding RNAs (lncRNAs) were involved in tumor progression. In this study, we aimed to determine the roles and mechanisms of lncRNA–cell division cycle 6 (CDC6) in regulating proliferation and metastasis of breast cancer. Clinically, lncRNA–CDC6 was highly expressed in tumor tissues and was positively correlated with clinical stages of breast cancers. Functionally, the ectopic expression of lncRNA–CDC6 promoted proliferation via regulation of G1 phase checkpoint, and further promoting the migration capability. Moreover, lncRNA–CDC6 could function as competitive endogenous RNA (ceRNA) via directly sponging of microRNA‐215 (miR‐215), which further regulating the expression of CDC6. Taken together, our results proved that lncRNA–CDC6 could function as ceRNA and promote the proliferation and metastasis of breast cancer cells, which provided a novel prognostic marker for breast cancers in clinic.


Cell Death & Differentiation | 2018

SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2

Ning Zhang; Hanwen Zhang; Ying Liu; Peng Su; Jiashu Zhang; Xiaolong Wang; Mingjuan Sun; Bing Chen; Wenjing Zhao; Lijuan Wang; Huiyun Wang; Meena S. Moran; Bruce G. Haffty; Qifeng Yang

The progression of localized breast cancer to distant metastasis results in a poor prognosis and a high mortality rate. In this study, the contributions of miRNAs to tumor progression and the regulatory mechanisms leading to their expression alterations were investigated. Using highly lung-metastatic sub-lines from parental breast cancer cells, miRNA expression profiling revealed that the miR-17-92 cluster is significantly downregulated and the miR-18a-5p is the most evidently decreased. Ectopic expression and inhibition of miR-18a-5p demonstrated its capacity in suppressing migration and invasion of breast cancer cells. Further research identified sterol regulatory element binding transcription protein 1 (SREBP1), the master transcription factor that controls lipid metabolism, as a candidate target of miR-18a-5p. SREBP1 is overexpressed and strongly associated with worse clinical outcomes in breast cancer. Functionally SREBP1 promotes growth and metastasis of breast cancer both in vitro and in vivo. To unravel the underlying mechanism of SREBP1-mediated metastasis, mRNA profiling and subsequent gene set enrichment analyses (GSEA) were performed and SREBP1 was demonstrated to be significantly associated with epithelial-mesenchymal transition (EMT). Furthermore, SREBP1-mediated repression of E-cadherin was found to be deacetylation dependent and was augmented by recruiting Snail/HDAC1/2 repressor complex. In the light of these data, we propose that reduced expression of miR-18a-5p and concomitant overexpression of SREBP1 lead to induction of EMT states that in turn, promote breast cancer progression and metastasis. Taken together, our study reveals the crucial role of miR-18a-5p and SREBP1 in the EMT and metastasis, thus providing promising drug targets for tailored therapy in the advanced breast cancer setting.


Breast Cancer Research and Treatment | 2015

Predictive factors of nipple involvement in breast cancer: a systematic review and meta-analysis.

Hanwen Zhang; Yaming Li; Meena S. Moran; Bruce G. Haffty; Qifeng Yang

Collaboration


Dive into the Hanwen Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge