Hanzheng Guo
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanzheng Guo.
Journal of Applied Physics | 2013
Hanzheng Guo; Shujun Zhang; Scott P. Beckman; Xiaoli Tan
Chemically modified (K0.5Na0.5)NbO3 compositions with finely tuned polymorphic phase boundaries (PPBs) have shown excellent piezoelectric properties. The evolution of the domain morphology and crystal structure under applied electric fields of a model material, 0.948(K0.5Na0.5)NbO3–0.052LiSbO3, was directly visualized using in situ transmission electron microscopy. The in situ observations correlate extremely well with measurements of the electromechanical response on bulk samples. It is found that the origin of the excellent piezoelectric performance in this lead-free composition is due to a tilted monoclinic phase that emerges from the PPB when poling fields greater than 14 kV/cm are applied.
ACS Applied Materials & Interfaces | 2016
Hanzheng Guo; Jing Guo; Amanda Baker; Clive A. Randall
Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.
Journal of Applied Physics | 2015
Hanzheng Guo; Hiroyuki Shimizu; Youichi Mizuno; Clive A. Randall
A new lead-free antiferroelectric solid solution system, (1−x)NaNbO3-xSrZrO3, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO3 doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO3 without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO3-xCaZrO3 [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO3 - (1−x)NaNbO3 system (0 ≤ x ≤ 0.10),” Dalton Trans. (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.
Journal of Applied Physics | 2015
Hanzheng Guo; Hiroyuki Shimizu; Youichi Mizuno; Clive A. Randall
We recently developed a feasible crystal chemistry strategy to stabilize the antiferroelectricity in NaNbO3 through a chemical substitution to decrease the tolerance factor and increase the average electronegativity of the system [Shimizu et al., Dalton Trans. 44, 10763 (2015) and Guo et al., J. Appl. Phys. 117, 214103 (2015)]. Two novel lead-free antiferroelectric (AFE) solid solutions, (1-x)NaNbO3-xCaZrO3 and (1-x)NaNbO3-xSrZrO3, have been found to exhibit the double polarization hysteresis typical of a reversible AFE ↔ ferroelectric (FE) phase transition. In this study, as demonstrated by (1-x)NaNbO3-xCaZrO3 system, the influence of chemical modification and electrical poling on the AFE/FE phase stability was investigated, primarily focusing on the microstructural and crystallographic evolutions. Together with the macroscopic polarization hysteresis measurements, a well-demonstrated structure-property relationship was presented. It was found that the CaZrO3 substitution into NaNbO3 can effectively destabilize the FE Q phase and correspondingly lead to a spontaneous reverting to AFE P phase. In contrast to the reversible AFE ↔ FE phase transition, the domain morphology evolution exhibits irreversible nature with a growing process of the orientational domains after applying electric field. Moreover, a multiple-zone axes electron diffraction map of P and Q phases has been summarized and is believed to be an efficient diagram to determine the AFE/FE nature of the NaNbO3-based systems.
Applied Physics Letters | 2015
Hanzheng Guo; Hiroyuki Shimizu; Clive A. Randall
Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO3 polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phase region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO3 solid solutions.
APL Materials | 2018
Dixiong Wang; Hanzheng Guo; Carl Morandi; Clive A. Randall; Susan Trolier-McKinstry
This paper describes a cold sintering process for Pb(Zr,Ti)O3 ceramics and the associated processing-property relations. Pb(Zr,Ti)O3 has a very small, incongruent solubility that is a challenge during cold sintering. To circumvent this, a Pb(NO3)2 solution was used as the transient liquid phase. A bimodal lead zirconate titanate powder was densified to a relative density of 89% by cold sintering at 300 °C and 500 MPa. After the cold sintering step, the permittivity was 200, and the dielectric loss was 2.0%. A second heat-treatment involving a 3 h anneal at 900 °C increased the relative density to 99%; the resulting relative dielectric permittivity was 1300 at room temperature and 100 kHz. The samples showed well-defined ferroelectric hysteresis loops, having a remanent polarization of 28 μC/cm2. On poling, the piezoelectric coefficient d33 was ∼200 pC/N. With a 700 °C 3 h post-annealing, samples show a lower room temperature relative permittivity (950 at 100 kHz), but a 24 h hold time at 700 °C produces c...
Journal of Applied Physics | 2017
Kosuke Tsuji; Wei Ting Chen; Hanzheng Guo; Wen Hsi Lee; Sophie Guillemet-Fritsch; Clive A. Randall
The d.c. conduction is investigated in the two different types of internal barrier layer capacitors, namely, (Mn, Nb)-doped SrTiO3 (STO) and CaCu3Ti4O12 (CCTO). Scanning electron microscopy (SEM) and Capacitance - Voltage (C-V) analysis are performed to estimate the effective electric field at a grain boundary, EGB. Then, the d.c. conduction mechanism is discussed based on the J (Current density)-EGB characteristics. Three different conduction mechanisms are successively observed with the increase of EGB in both systems. In (Mn, Nb)-doped STO, non-linear J-EGB characteristics is temperature dependent at the intermediate EGB and becomes relatively insensitive to the temperature at the higher EGB. The J- EGB at each regime is explained by the Schottky emission (SE) followed by Fowler-Nordheim (F-N) tunneling. Based on the F-N tunneling, the breakdown voltage is then scaled by the function of the depletion layer thickness and Schottky barrier height at the average grain boundary. The proposed function shows a clear linear relationship with the breakdown. On the other hand, F-N tunneling was not observed in CCTO in our measurement. Ohmic, Poole-Frenkel (P-F), and SE are successively observed in CCTO. The transition point from P-F and SE depends on EGB and temperature. A charge-based deep level transient spectroscopy study reveals that 3 types of trap states exist in CCTO. The trap one with Et ∼ 0.65 eV below the conduction band is found to be responsible for the P-F conduction.
Journal of Applied Physics | 2016
Lisheng Gao; Hanzheng Guo; Shujun Zhang; Clive A. Randall
We demonstrated a new CaHfO3-NaNbO3 solid solution system that allows stable antiferroelectric (AFE) (P) phase to exist under ambient conditions. Based on crystal chemistry viewpoint of relative change of the Goldschmidt tolerance factor (t) and polarizability, two new solid solutions were fabricated using the perovskite end member CaHfO3. It was found that the CaHfO3 effectively stabilized the antiferroelectric (AFE) P phase in NaNbO3. In this article, electrical properties and transmission electron microscopy experiments were conducted to verify the stabilization and enhancement of antiferroelectric behavior over the various solid solutions, where both structural signature of ¼{010} superlattice diffraction reflections and electrical characteristic of double polarization-electric (P-E) hysteresis were observed.
Journal of Applied Physics | 2015
Hanzheng Guo; Hiroyuki Shimizu; Clive A. Randall
Our recent study found that CaZrO3 doping can effectively enhance the antiferroelectric P phase in NaNbO3 ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO3 doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr1−xTix)O3 and rare-earth doped BiFeO3 systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where t...
RSC Advances | 2016
Kosuke Tsuji; Wei Ting Chen; Hanzheng Guo; Xiao Ming Chen; Tai Kuang Lee; Wen Hsi Lee; Clive A. Randall
In this study, colossal effective permittivity (e′ ∼ 50 000) dielectrics are attained in Mn and Nb co-doped SrTiO3-based capacitors, and the effective permittivity is explained in terms of an internal barrier layer (IBL) effect. Here, we use a combination of characterization techniques, including scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDS), and charge Deep Level Transition Spectroscopy (Q-DLTS) to confirm the presence of interfacial electronic traps in an air co-fired capacitor with Pt internal electrodes. The IBL was developed by an oxidative annealing process, leading to improved dielectric loss and breakdown voltages. The elemental mapping confirms that the dopant has a Mn-rich segregation layer in the grain boundaries and also at the electrode/ceramic interface. The EELS results reveal the valence change of manganese changed from a mixed Mn2+/Mn3+ to a mixed Mn3+/Mn4+ during an annealing process. The valence changes helps to enhance the Schottky barrier height at the grain boundaries, and this is quantified by a Capacitance–Voltage (C–V) analysis. Moreover, Q-DLTS results are presented to show the three electronic traps existing at IBL. All these changes with oxidative annealing are also discussed and related to the electrical and dielectric property trends.