Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hao-Chieh Chiu is active.

Publication


Featured researches published by Hao-Chieh Chiu.


Journal of Biomedical Science | 2009

Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent

Hao-Chieh Chiu; Shilpa Soni; Samuel K. Kulp; Heather Curry; Dasheng Wang; John S. Gunn; Larry S. Schlesinger; Ching-Shih Chen

BackgroundAutophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.Methods and resultsOur results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.ConclusionTogether, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.


Antimicrobial Agents and Chemotherapy | 2009

Eradication of Intracellular Salmonella enterica Serovar Typhimurium with a Small-Molecule, Host Cell-Directed Agent

Hao-Chieh Chiu; Samuel K. Kulp; Shilpa Soni; Dasheng Wang; John S. Gunn; Larry S. Schlesinger; Ching-Shih Chen

ABSTRACT Eradication of intracellular pathogenic bacteria with host-directed chemical agents has been an anticipated innovation in the treatment of antibiotic-resistant bacteria. We previously synthesized and characterized a novel small-molecule agent, AR-12, that induces autophagy and inhibits the Akt kinase in cancer cells. As both autophagy and the Akt kinase have been shown recently to play roles in the intracellular survival of several intracellular bacteria, including Salmonellaenterica serovar Typhimurium, we investigated the effect of AR-12 on the intracellular survival of Salmonella serovar Typhimurium in macrophages. Our results show that AR-12 induces autophagy in macrophages, as indicated by increased autophagosome formation, and potently inhibits the survival of serovar Typhimurium in macrophages in association with increased colocalization of intracellular bacteria with autophagosomes. Intracellular bacterial growth was partially rescued in the presence of AR-12 by the short hairpin RNA-mediated knockdown of Beclin-1 or Atg7 in macrophages. Moreover, AR-12 inhibits Akt kinase activity in infected macrophages, which we show to be important for its antibacterial effect as the enforced expression of constitutively activated Akt1 in these cells reverses the AR-12-induced inhibition of intracellular serovar Typhimurium survival. Finally, oral administration of AR-12 at 2.5 mg/kg/day to serovar Typhimurium-infected mice reduced hepatic and splenic bacterial burdens and significantly prolonged survival. These findings show that AR-12 represents a proof of principle that the survival of intracellular bacteria can be suppressed by small-molecule agents that target both innate immunity and host cell factors modulated by bacteria.


Science Signaling | 2013

Vitamin E Facilitates the Inactivation of the Kinase Akt by the Phosphatase PHLPP1

Po Hsien Huang; Hsiao Ching Chuang; Chih Chien Chou; Huiling Wang; Su Lin Lee; Hsiao Ching Yang; Hao-Chieh Chiu; Naval Kapuriya; Dasheng Wang; Samuel K. Kulp; Ching-Shih Chen

Vitamin E suppresses the proliferation of prostate cancer cells by inhibiting the growth-promoting kinase Akt. Suppressing Cancer Growth with Vitamin E Vitamin E has well-known health benefits, including an anticancer effect. Tocopherols, a dietary form of vitamin E, induce the dephosphorylation of the kinase Akt, thereby inhibiting Akt-mediated signals that promote cell metabolism, proliferation, and motility. Huang et al. found that tocopherols, which integrate into cell membranes, stimulated a site-specific dephosphorylation of Akt by recruiting both Akt and the phosphatase PHLPP1 to the cell membrane through their respective pleckstrin homology (PH) domains. Tocopherol-derived synthetic compounds showed more potent effects than natural tocopherols in mediating this inactivation of Akt and reducing the growth of xenograft prostate tumors in mice, indicating potential for drug development. Vitamin E is a fat-soluble vitamin with antioxidant properties. Tocopherols are the predominant form of vitamin E found in the diet and in supplements and have garnered interest for their potential cancer therapeutic and preventive effects, such as the dephosphorylation of Akt, a serine/threonine kinase with a pivotal role in cell growth, survival, and metabolism. Dephosphorylation of Akt at Ser473 substantially reduces its catalytic activity and inhibits downstream signaling. We found that the mechanism by which α-tocopherol and γ-tocopherol facilitate this site-specific dephosphorylation of Akt was mediated through the pleckstrin homology (PH) domain–dependent recruitment of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1) to the plasma membrane. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain–containing proteins, which may underlie the preferential recruitment of these proteins to membranes containing tocopherols. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. By describing a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, we provide insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain–targeted Akt inhibitors.


Cellular Microbiology | 2013

Enterohaemorrhagic Escherichia coli O157:H7 Shiga‐like toxin 1 is required for full pathogenicity and activation of the p38 mitogen‐activated protein kinase pathway in Caenorhabditis elegans

T. C. Chou; Hao-Chieh Chiu; Cheng-Ju Kuo; C. M. Wu; Wan-Jr Syu; Wen Tai Chiu; Chang Shi Chen

Enterohaemorrhagic Escherichia coli (EHEC) causes life‐threatening infections in humans as a consequence of the production of Shiga‐like toxins. Lack of a good animal model system currently hinders in vivo study of EHEC virulence by systematic genetic methods. Here we applied the genetically tractable animal, Caenorhabditis elegans, as a surrogate host to study the virulence of EHEC as well as the host immunity to this human pathogen. Our results show that E. coli O157:H7, a serotype of EHEC, infects and kills C. elegans. Bacterial colonization and induction of the characteristic attaching and effacing (A/E) lesions in the intact intestinal epithelium of C. elegans by E. coli O157:H7 were concomitantly demonstrated in vivo. Genetic analysis indicated that the Shiga‐like toxin 1 (Stx1) of E. coli O157:H7 is a virulence factor in C. elegans and is required for full toxicity. Moreover, the C. elegans p38 mitogen‐activated protein kinase (MAPK) pathway, anevolutionarily conserved innate immune and stress response signalling pathway, is activated in the regulation of host susceptibility to EHEC infection in a Stx1‐dependent manner. Our results validate the EHEC–C. elegans interaction as suitable for future comprehensive genetic screens for both novel bacterial and host factors involved in the pathogenesis of EHEC infection.


Bioorganic & Medicinal Chemistry | 2012

Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus

Hao-Chieh Chiu; Su-Lin Lee; Naval Kapuriya; Dasheng Wang; Yi-Ru Chen; Sung-Liang Yu; Samuel K. Kulp; Lee-Jene Teng; Ching-Shih Chen

Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to public health because of its resistance to multiple antibiotics most commonly used to treat infection. In this study, we report the unique ability of the cyclooxygenase-2 (COX-2) inhibitor celecoxib to kill Staphylococcus aureus and MRSA with modest potency. We hypothesize that the anti-Staphylococcus activity of celecoxib could be pharmacologically exploited to develop novel anti-MRSA agents with a distinct mechanism. Examination of an in-house, celecoxib-based focused compound library in conjunction with structural modifications led to the identification of compound 46 as the lead agent with high antibacterial potency against a panel of Staphylococcus pathogens and different strains of MRSA. Moreover, this killing effect is bacteria-specific, as human cancer cells are resistant to 46. In addition, a single intraperitoneal administration of compound 46 at 30 mg/kg improved the survival of MRSA-infected C57BL/6 mice. In light of its high potency in eradicating MRSA in vitro and its in vivo activity, compound 46 and its analogues warrant continued preclinical development as a potential therapeutic intervention against MRSA.


Antimicrobial Agents and Chemotherapy | 2009

Pharmacological Exploitation of an Off-Target Antibacterial Effect of the Cyclooxygenase-2 Inhibitor Celecoxib against Francisella tularensis

Hao-Chieh Chiu; Jian Yang; Shilpa Soni; Samuel K. Kulp; John S. Gunn; Larry S. Schlesinger; Ching-Shih Chen

ABSTRACT Francisella tularensis, a bacterium which causes tularemia in humans, is classified as a CDC category A bioterrorism agent. In this study, we demonstrate that celecoxib, an anti-inflammatory cyclooxygenase-2 inhibitor in clinical use, exhibits activity against a type A strain of F. tularensis (Schu S4), the live vaccine strain of F. tularensis (a type B strain), and F. novicida (“F. tularensis subsp. novicida”) directly in growth medium. This bacterial killing, however, was not noted with rofecoxib, despite its higher potency than that of celecoxib in inhibiting cyclooxygenase-2. The unique ability of celecoxib to inhibit the proliferation of F. tularensis could be pharmacologically exploited to develop novel anti-Francisella therapeutic agents, of which the proof of principle is demonstrated by compound 20, a celecoxib derivative identified through the screening of a celecoxib-based focused compound library. Compound 20 inhibited the intracellular proliferation of Francisella in macrophages without causing appreciable toxicity to these host cells. Together, these data support the translational potential of compound 20 for the further development of novel, potent anti-Francisella agents.


Scientific Reports | 2016

Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis

Jung-Chen Su; Ai-Chung Mar; Szu-Hsien Wu; Wei-Tien Tai; Pei-Yi Chu; Chia-Yun Wu; Ling-Ming Tseng; Te-Chang Lee; Kuen-Feng Chen; Chun-Yu Liu; Hao-Chieh Chiu; Chung-Wai Shiau

Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC.


Antimicrobial Agents and Chemotherapy | 2014

Sensitization of Intracellular Salmonella enterica Serovar Typhimurium to Aminoglycosides In Vitro and In Vivo by a Host-Targeted Antimicrobial Agent

Jung-Hsin Lo; Samuel K. Kulp; Ching-Shih Chen; Hao-Chieh Chiu

ABSTRACT Aminoglycosides exhibit relatively poor activity against intracellular Salmonella enterica serovar Typhimurium due to their low permeativity across eukaryotic cell membranes. Previously, we identified the unique ability of AR-12, a celecoxib-derived small-molecule agent, to eradicate intracellular Salmonella Typhimurium in macrophages by facilitating autophagosome formation and suppressing Akt kinase signaling. In light of this unique mode of antibacterial action, we investigated the ability of AR-12 to sensitize intracellular Salmonella to aminoglycosides in macrophages and in an animal model. The antibacterial activities of AR-12 combined with various aminoglycosides, including streptomycin, kanamycin, gentamicin, and amikacin, against intracellular S. Typhimurium in murine RAW264.7 macrophages were assessed. Cells were infected with S. Typhimurium followed by treatment with AR-12 or individual aminoglycosides or with combinations for 24 h. The in vivo efficacies of AR-12, alone or in combination with gentamicin or amikacin, were also assessed by treating S. Typhimurium-infected BALB/c mice daily for 14 consecutive days. Exposure of S. Typhimurium-infected RAW264.7 cells to a combination of AR-12 with individual aminoglycosides led to a reduction in bacterial survival (P < 0.05), both intracellular and extracellular, that was greater than that seen with the aminoglycosides alone. This sensitizing effect, however, was not associated with increased aminoglycoside penetration into bacteria or macrophages. Moreover, daily intraperitoneal injection of AR-12 at 0.1 mg/kg of body weight significantly increased the in vivo efficacy of gentamicin and amikacin in prolonging the survival of S. Typhimurium-infected mice. These findings indicate that the unique ability of AR-12 to enhance the in vivo efficacy of aminoglycosides might have translational potential for efforts to develop novel strategies for the treatment of salmonellosis.


Biochemical and Biophysical Research Communications | 2013

Histone deacetylase inhibitor AR42 regulates telomerase activity in human glioma cells via an Akt-dependent mechanism.

Ya Luen Yang; Po Hsien Huang; Hao-Chieh Chiu; Samuel K. Kulp; Ching-Shih Chen; Cheng Ju Kuo; Huan Da Chen; Chang Shi Chen

Epigenetic regulation via abnormal activation of histone deacetylases (HDACs) is a mechanism that leads to cancer initiation and promotion. Activation of HDACs results in transcriptional upregulation of human telomerase reverse transcriptase (hTERT) and increases telomerase activity during cellular immortalization and tumorigenesis. However, the effects of HDAC inhibitors on the transcription of hTERT vary in different cancer cells. Here, we studied the effects of a novel HDAC inhibitor, AR42, on telomerase activity in a PTEN-null U87MG glioma cell line. AR42 increased hTERT mRNA in U87MG glioma cells, but suppressed total telomerase activity in a dose-dependent manner. Further analyses suggested that AR42 decreases the phosphorylation of hTERT via an Akt-dependent mechanism. Suppression of Akt phosphorylation and telomerase activity was also observed with PI3K inhibitor LY294002 further supporting the hypothesis that Akt signaling is involved in suppression of AR42-induced inhibition of telomerase activity. Finally, ectopic expression of a constitutive active form of Akt restored telomerase activity in AR42-treated cells. Taken together, our results demonstrate that the novel HDAC inhibitor AR42 can suppress telomerase activity by inhibiting Akt-mediated hTERT phosphorylation, indicating that the PI3K/Akt pathway plays an important role in the regulation of telomerase activity in response to this HDAC inhibitor.


Journal of Antimicrobial Chemotherapy | 2015

A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii

Hsiao-Jan Chen; Wei-Chun Hung; Yu-Tzu Lin; Jui-Chang Tsai; Hao-Chieh Chiu; Po-Ren Hsueh; Lee-Jene Teng

OBJECTIVES To determine MICs of fusidic acid for and identify genetic determinants of resistance in Staphylococcus cohnii isolates. METHODS Susceptibility to fusidic acid was determined by the standard agar dilution method in 24 S. cohnii subsp. urealyticus clinical isolates, 7 S. cohnii subsp. cohnii clinical isolates and 2 reference strains. Sequencing of a novel resistance determinant, fusF, and its flanking regions was performed by long and accurate PCR and inverse PCR. To evaluate the function of fusF, the MIC of fusidic acid was determined for recombinant Staphylococcus aureus carrying a plasmid expressing fusF. RESULTS A total of 25 S. cohnii subsp. urealyticus (24 clinical isolates and 1 reference strain) and 2 S. cohnii subsp. cohnii displayed low-level resistance to fusidic acid (MICs 2-16 mg/L). Sequencing of a 4259 bp fragment from S. cohnii subsp. urealyticus ATCC 49330 revealed a novel resistance gene, designated fusF, which displayed 70.5% nucleotide and 67.3% amino acid identity to fusD. Expression of fusF in S. aureus confers resistance to fusidic acid. CONCLUSIONS A novel FusB-family gene, fusF, was identified as a major resistance determinant in S. cohnii clinical isolates resistant to fusidic acid.

Collaboration


Dive into the Hao-Chieh Chiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Shi Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Wai Shiau

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Lee-Jene Teng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Po-Ren Hsueh

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge