Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel K. Kulp is active.

Publication


Featured researches published by Samuel K. Kulp.


Cancer Research | 2004

From the Cyclooxygenase-2 Inhibitor Celecoxib to a Novel Class of 3-Phosphoinositide-Dependent Protein Kinase-1 Inhibitors

Jiuxiang Zhu; Jui-Wen Huang; Ping-Hui Tseng; Ya-Ting Yang; Joseph W. Fowble; Chung-Wai Shiau; Yeng-Jeng Shaw; Samuel K. Kulp; Ching-Shih Chen

The blockade of Akt activation through the inhibition of 3-phosphoinositide-dependent kinase-1 (PDK-1) represents a major signaling mechanism whereby celecoxib mediates apoptosis. Celecoxib, however, is a weak PDK-1 inhibitor (IC50, 48 μm), requiring at least 30 μm to exhibit discernable effects on the growth of tumor cells in vitro. Here, we report the structure-based optimization of celecoxib to develop PDK-1 inhibitors with greater potency in enzyme inhibition and growth inhibition. Kinetics of PDK-1 inhibition by celecoxib with respect to ATP suggest that celecoxib derivatives inhibit PDK-1 by competing with ATP for binding, a mechanism reminiscent to that of many kinase inhibitors. Structure-activity analysis together with molecular modeling was used to generate compounds that were tested for their potency in inhibiting PDK-1 kinase activity and in inducing apoptosis in PC-3 prostate cancer cells. Docking of potent compounds into the ATP-binding site of PDK-1 was performed for lead optimization, leading to two compounds, OSU-03012 and OSU-03013, with IC50 values in PDK-1 inhibition and apoptosis induction in the low μm range. Exposure of PC-3 cells to these agents led to Akt dephosphorylation and inhibition of p70 S6 kinase activity. Moreover, overexpression of constitutively active forms of PDK-1 and Akt partially protected OSU-03012-induced apoptosis. Screening in a panel of 60 cell lines and more extensive testing in PC-3 cells indicated that the mean concentration for total growth inhibition was ∼3 μm for both agents. Considering the conserved role of PDK-1/Akt signaling in promoting tumorigenesis, these celecoxib analogs are of translational relevance for cancer prevention and therapy.


Cancer Research | 2004

3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells.

Samuel K. Kulp; Ya-Ting Yang; Chin Chun Hung; Kuen-Feng Chen; Ju-Ping Lai; Ping-Hui Tseng; Joseph W. Fowble; Patrick J. Ward; Ching-Shih Chen

Regarding the involvement of cyclooxygenase-2 (COX-2)-independent pathways in celecoxib-mediated antineoplastic effects, the following two issues remain outstanding: identity of the non-COX-2 targets and relative contributions of COX-2-dependent versus -independent mechanisms. We use a close celecoxib analog deficient in COX-2-inhibitory activity, DMC {4-[5-(2,5-dimethylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide}, to examine the premise that Akt signaling represents a major non-COX-2 target. Celecoxib and DMC block Akt activation in PC-3 cells through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1) with IC50 of 48 and 38 μm, respectively. The consequent effect on Akt activation is more pronounced (IC50 values of 28 and 20 μm, respectively), which might be attributed to the concomitant dephosphorylation by protein phosphatase 2A. In serum-supplemented medium, celecoxib and DMC cause G1 arrest, and at higher concentrations, they induce apoptosis with relative potency comparable with that in blocking Akt activation. Moreover, the effect of daily oral celecoxib and DMC at 100 and 200 mg/kg on established PC-3 xenograft tumors is assessed. Celecoxib at both doses and DMC at 100 mg/kg had marginal impacts. However, a correlation exists between the in vitro potency of DMC and its ability at 200 mg/kg to inhibit xenograft tumor growth through the inhibition of Akt activation. Analysis of the tumor samples indicates that a differential reduction in the phospho-Akt/Akt ratio was noted in celecoxib- and DMC-treated groups vis-à-vis the control group. Together, these data underscore the role of 3-phosphoinositide-dependent protein kinase-1/Akt signaling in celecoxib-mediated in vitro antiproliferative effects in prostate cancer cells.


Cancer Research | 2005

Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ

Chung-Wai Shiau; Chih Cheng Yang; Samuel K. Kulp; Kuen-Feng Chen; Chang Shi Chen; Jui Wen Huang; Ching-Shih Chen

Certain members of the thiazolidenedione family of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, such as troglitazone and ciglitazone, exhibit antitumor effects; however, the underlying mechanism remains inconclusive. This study shows that the effect of these thiazolidenedione members on apoptosis in prostate cancer cells is independent of PPARgamma activation. First, close structural analogues of thiazolidenediones, whereas devoid of PPARgamma activity, retain the ability to induce apoptosis with equal potency. Second, both PC-3 (PPARgamma-expressing) and LNCaP (PPARgamma-deficient) cells are sensitive to apoptosis induction by troglitazone and its PPARgamma-inactive analogue irrespective of their PPARgamma expression status. Third, rosiglitazone and pioglitazone, potent PPARgamma agonists, show marginal effects on apoptosis even at high concentrations. Evidence indicates that the apoptotic effect of troglitazone, ciglitazone, and their PPARgamma-inactive analogues 5-[4-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-ylmethoxy)-benzylidene]-2,4-thiazolidine-dione (Delta2-TG) and 5-[4-(1-methyl-cyclohexylmethoxy)-benzylidene]-thiazolidine-2,4-dione, respectively, is in part attributable to their ability to inhibit the anti-apoptotic functions of Bcl-xL and Bcl-2. Treatment of PC-3 cells with troglitazone or Delta2-TG led to reduced association of Bcl-2 and Bcl-xL with Bak, leading to caspase-dependent apoptosis. Bcl-xL overexpression protects LNCaP cells from apoptosis induction by troglitazone and Delta2-TG in an expression level-dependent manner. Considering the pivotal role of Bcl-xL/Bcl-2 in regulating mitochondrial integrity, this new mode of mechanism provides a framework to account for the PPARgamma-independent action of thiazolidenediones in inducing apoptosis in cancer cells. Moreover, dissociation of these two pharmacologic activities provides a molecular basis to develop novel Bcl-xL/Bcl-2 inhibitors, of which the proof of principle is illustrated by a Delta2-TG analogue with potent in vivo antitumor activities.


Cancer Research | 2007

Histone Deacetylase Inhibitors Sensitize Prostate Cancer Cells to Agents that Produce DNA Double-Strand Breaks by Targeting Ku70 Acetylation

Chang Shi Chen; Yu Chieh Wang; Hsiao Ching Yang; Po Hsien Huang; Samuel K. Kulp; Chih Cheng Yang; Yen Shen Lu; Shigemi Matsuyama; Ching Yu Chen; Ching-Shih Chen

This study reports a histone deacetylation-independent mechanism whereby histone deacetylase (HDAC) inhibitors sensitize prostate cancer cells to DNA-damaging agents by targeting Ku70 acetylation. Ku70 represents a crucial component of the nonhomologous end joining repair machinery for DNA double-strand breaks (DSB). Our data indicate that pretreatment of prostate cancer cells with HDAC inhibitors (trichostatin A, suberoylanilide hydroxamic acid, MS-275, and OSU-HDAC42) led to increased Ku70 acetylation accompanied by reduced DNA-binding affinity without disrupting the Ku70/Ku80 heterodimer formation. As evidenced by increased Ser(139)-phosphorylated histone H2AX (gammaH2AX), impaired Ku70 function diminished cellular capability to repair DNA DSBs induced by bleomycin, doxorubicin, and etoposide, thereby enhancing their cell-killing effect. This sensitizing effect was most prominent when cells were treated with HDAC inhibitors and DNA-damaging agents sequentially. Mimicking acetylation was done by replacing K282, K317, K331, K338, K539, or K542 with glutamine via site-directed mutagenesis, which combined with computer docking analysis was used to analyze the role of these lysine residues in the interactions of Ku70 with DNA broken ends. Mutagenesis of K282, K338, K539, or K542 suppressed the activity of Ku70 to bind DNA, whereas mutagenesis of K317 or K331 with glutamine had no significant effect. Moreover, overexpression of K282Q or K338Q rendered DU-145 cells more susceptible to the effect of DNA-damaging agents on gammaH2AX formation and cell killing. Overall, the ability of HDAC inhibitors to regulate cellular ability to repair DNA damage by targeting Ku70 acetylation underlies the viability of their combination with DNA-damaging agents as a therapeutic strategy for prostate cancer.


Cancer Research | 2010

Novel STAT3 Phosphorylation Inhibitors Exhibit Potent Growth-Suppressive Activity in Pancreatic and Breast Cancer Cells

Li Lin; Brian Hutzen; Mingxin Zuo; Sarah Ball; Stephanie Deangelis; Elizabeth Foust; Bulbul Pandit; Michael A. Ihnat; Satyendra S. Shenoy; Samuel K. Kulp; Pui Kai Li; Chenglong Li; James R. Fuchs; Jiayuh Lin

The constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small-molecule STAT3 inhibitors, known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus kinase 2 and the STAT3 Src homology-2 domain, which serve crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA-binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar and cell invasion and exhibit synergy with the anticancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by IFNalpha and interleukin-6 in breast cancer cells. We also show that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling.


Clinical Cancer Research | 2006

Antitumor Effects of a Novel Phenylbutyrate-Based Histone Deacetylase Inhibitor, (S)-HDAC-42, in Prostate Cancer

Samuel K. Kulp; Chang Shi Chen; Da Sheng Wang; Ching-Yu Chen; Ching-Shih Chen

Purpose: To assess the antitumor effects of a novel phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, (S)-HDAC-42, vis-à-vis suberoylanilide hydroxamic acid (SAHA) in in vitro and in vivo models of human prostate cancer. Experimental Design: The in vitro effects of (S)-HDAC-42 and SAHA were evaluated in PC-3, DU-145, or LNCaP human prostate cancer cell lines. Cell viability, apoptosis, and indicators of HDAC inhibition were assessed. Effects on Akt and members of the Bcl-2 and inhibitor of apoptosis protein families were determined by immunoblotting. Immunocompromised mice bearing established s.c. PC-3 xenograft tumors were treated orally with (S)-HDAC-42 (50 mg/kg q.o.d. or 25 mg/kg q.d.) or SAHA (50 mg/kg q.d.) for 28 days. In vivo end points included tumor volumes and intratumoral changes in histone acetylation, phospho-Akt status, and protein levels of Bcl-xL and survivin. Results: (S)-HDAC-42 was more potent than SAHA in suppressing the viability of all cell lines evaluated with submicromolar IC50 values. Relative to SAHA, (S)-HDAC-42 exhibited distinctly superior apoptogenic potency, and caused markedly greater decreases in phospho-Akt, Bcl-xL, and survivin in PC-3 cells. The growth of PC-3 tumor xenografts was suppressed by 52% and 67% after treatment with (S)-HDAC-42 at 25 and 50 mg/kg, respectively, whereas SAHA at 50 mg/kg suppressed growth by 31%. Intratumoral levels of phospho-Akt and Bcl-xL were markedly reduced in (S)-HDAC-42-treated mice, in contrast to mice treated with SAHA. Conclusions: (S)-HDAC-42 is a potent orally bioavailable inhibitor of HDAC, as well as targets regulating multiple aspects of cancer cell survival, which might have clinical value in prostate cancer chemotherapy and warrants further investigation in this regard.


Molecular Pharmacology | 2011

Histone Deacetylase Inhibitors Stimulate Histone H3 Lysine 4 Methylation in Part Via Transcriptional Repression of Histone H3 Lysine 4 Demethylases

Po Hsien Huang; Chun Han Chen; Chih Chien Chou; Aaron M. Sargeant; Samuel K. Kulp; Che-Ming Teng; John C. Byrd; Ching-Shih Chen

This study investigates the mechanism by which histone deacetylase (HDAC) inhibitors up-regulate histone H3 lysine 4 (H3K4) methylation. Exposure of LNCaP prostate cancer cells and the prostate tissue of transgenic adenocarcinoma of the mouse prostate mice to the pan- and class I HDAC inhibitors (S)-(+)-N-hydroxy-4-(3-methyl-2-phenyl-butyrylamino)-benzamide (AR42), N-(2-aminophenyl)-4-[N-(pyridine-3-yl-methoxycarbonyl)-aminomethyl]-benzamide (MS-275), and vorinostat led to differential increases in H3K4 methylation. Chromatin immunoprecipitation shows that this accumulation of methylated H3K4 occurred in conjunction with decreases in the amount of the H3K4 demethylase RBP2 at the promoter of genes associated with tumor suppression and differentiation, including KLF4 and E-cadherin. This finding, together with the HDAC inhibitor-induced up-regulation of KLF4 and E-cadherin, suggests that HDAC inhibitors could activate the expression of these genes through changes in histone methylation status. Evidence indicates that this up-regulation of H3K4 methylation was attributable to the suppressive effect of these HDAC inhibitors on the expression of RBP2 and other JARID1 family histone demethylases, including PLU-1, SMCX, and LSD1, via the down-regulation of Sp1 expression. Moreover, shRNA-mediated silencing of the class I HDAC isozymes 1, 2, 3, and 8, but not that of the class II isozyme HDAC6, mimicked the drug effects on H3K4 methylation and H3K4 demethylases, which could be reversed by ectopic Sp1 expression. These data suggest a cross-talk mechanism between HDACs and H3K4 demethylases via Sp1-mediated transcriptional regulation, which underlies the complexity of the functional role of HDACs in the regulation of histone modifications.


Hepatology | 2007

Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma

Yen-Shen Lu; Yoko Kashida; Samuel K. Kulp; Yu-Chieh Wang; Dasheng Wang; Jui-Hsiang Hung; Monica Tang; Zhong-Zhe Lin; Te-Jung Chen; Ann-Lii Cheng; Ching-Shih Chen

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, yet effective therapeutic options for advanced HCC are limited. This study was aimed at assessing the antitumor effect of a novel phenylbutyrate‐derived histone deacetylase (HDAC) inhibitor, OSU‐HDAC42, vis‐à‐vis suberoylanilide hydroxamic acid (SAHA), in in vitro and in vivo models of human HCC. OSU‐HDAC42 was several times more potent than SAHA in suppressing the viability of PLC5, Huh7, and Hep3B cells with submicromolar median inhibitory concentration (IC50) values. With respect to SAHA, OSU‐HDAC42 exhibited greater apoptogenic potency, which was associated with reduced levels of the apoptotic regulators phosphorylated Akt B‐cell lymphoma‐xL, survivin, cellular inhibitor of apoptosis protein 1, and cellular inhibitor of apoptosis protein 2. The in vivo efficacy of OSU‐HDAC42 versus SAHA was assessed in orthotopic and subcutaneous xenograft tumor models in athymic nude mice. Daily oral treatments with OSU‐HDAC42 and SAHA, both at 25 mg/kg, suppressed the growth of orthotopic PLC5 tumor xenografts by 91% and 66%, respectively, and of established subcutaneous PLC5 tumor xenografts by 85% and 56%, respectively. This differential tumor suppression correlated with the modulation of intratumoral biomarkers associated with HDAC inhibition and apoptosis regulation. Moreover, the oral administration of OSU‐HDAC42 at 50 mg/kg every other day markedly suppressed ectopic tumor growth in mice bearing large tumor burdens (500 mm3) at the start of treatment. Conclusion: OSU‐HDAC42 is a potent, orally bioavailable inhibitor of HDAC with a broad spectrum of antitumor activity that includes targets regulating multiple aspects of cancer cell survival. These results suggest that OSU‐HDAC42 has clinical value in therapeutic strategies for HCC. (HEPATOLOGY 2007.)


Journal of Biological Chemistry | 2010

Energy Restriction as an Antitumor Target of Thiazolidinediones

Shuo Wei; Samuel K. Kulp; Ching-Shih Chen

Cancer cells gain growth advantages in the microenvironment by shifting cellular metabolism to aerobic glycolysis, the so-called Warburg effect. There is a growing interest in targeting aerobic glycolysis for cancer therapy by exploiting the differential susceptibility of malignant versus normal cells to glycolytic inhibition, of which the proof-of-concept is provided by the in vivo efficacy of dietary caloric restriction and natural product-based energy restriction-mimetic agents (ERMAs) such as resveratrol and 2-deoxyglucose in suppressing carcinogenesis in animal models. Here, we identified thiazolidinediones as a novel class of ERMAs in that they elicited hallmark cellular responses characteristic of energy restriction, including transient induction of Sirt1 (silent information regulator 1) expression, activation of the intracellular fuel sensor AMP-activated protein kinase, and endoplasmic reticulum stress, the interplay among which culminated in autophagic and apoptotic death. The translational implications of this finding are multifold. First, the novel function of troglitazone and ciglitazone in targeting energy restriction provides a mechanistic basis to account for their peroxisome proliferator-activated receptor γ-independent effects on a broad spectrum of signaling targets. Second, we demonstrated that Sirt1-mediated up-regulation of β-transducin repeat-containing protein-facilitated proteolysis of cell cycle- and apoptosis-regulatory proteins is an energy restriction-elicited signaling event and is critical for the antitumor effects of ERMAs. Third, it provides a molecular rationale for using thiazolidinediones as scaffolds to develop potent ERMAs, of which the proof-of-principle is demonstrated by OSU-CG12. OSU-CG12, a peroxisome proliferator-activated receptor γ-inactive ciglitazone derivative, exhibits 1- and 3-order of magnitude higher potency in eliciting starvation-like cellular responses relative to resveratrol and 2-deoxyglucose, respectively.


Molecular Pharmacology | 2007

2-Amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} Acetamide (OSU-03012), a Celecoxib Derivative, Directly Targets p21-Activated Kinase

Leonardo M. Porchia; Marcy Guerra; Yu-Chieh Wang; Yunlong Zhang; Allan V. Espinosa; Motoo Shinohara; Samuel K. Kulp; Lawrence S. Kirschner; Motoyasu Saji; Ching-Shih Chen; Matthew D. Ringel

p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cell-free kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.

Collaboration


Dive into the Samuel K. Kulp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Po-Chen Chu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Hao-Chieh Chiu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron M. Sargeant

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Charles L. Shapiro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge