Hao-Tsung Chen
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hao-Tsung Chen.
Optics Express | 2012
Che-Hao Liao; Wen-Ming Chang; Horng-Shyang Chen; Chih-Yen Chen; Yu-Feng Yao; Hao-Tsung Chen; Chia-Ying Su; Shao-Ying Ting; Yean-Woei Kiang; C. C. Yang
With the nano-imprint lithography and the pulsed growth mode of metalorganic chemical vapor deposition, a regularly-patterned, c-axis nitride nanorod (NR) array of quite uniform geometry with simultaneous depositions of top-face, c-plane disc-like and sidewall, m-plane core-shell InGaN/GaN quantum well (QW) structures is formed. The differences of geometry and composition between these two groups of QW are studied with scanning electron microscopy, cathodoluminescence, and transmission electron microscopy (TEM). In particular, the strain state analysis results in TEM observations provide us with the information about the QW width and composition. It is found that the QW widths are narrower and the indium contents are higher in the sidewall m-plane QWs, when compared with the top-face c-plane QWs. Also, in the sidewall m-plane QWs, the QW width (indium content) decreases (increases) with the height on the sidewall. The observed results can be interpreted with the migration behaviors of the constituent atoms along the NR sidewall from the bottom.
Journal of Applied Physics | 2013
Che-Hao Liao; Wen-Ming Chang; Yu-Feng Yao; Hao-Tsung Chen; Chia-Ying Su; Chih-Yen Chen; Chieh Hsieh; Horng-Shyang Chen; Charng-Gan Tu; Yean-Woei Kiang; C. C. Yang; Ta-Cheng Hsu
The cross-sectional sizes of the regularly patterned GaN nanorods (NRs) and InGaN/GaN quantum-well (QW) NRs of different heights and different hexagon orientations, which are grown on the patterned templates of different hole diameters, pitches, and crystal orientations, are compared. It is found that the cross-sectional size of the GaN NR, which is formed with the pulsed growth mode, is mainly controlled by the patterned hole diameter, and the thickness of the sidewall QW structure is mainly determined by the NR height. The cross-sectional size variation of GaN NR is interpreted by the quasi-three-dimensional nature of atom supply amount for precipitating a two-dimensional disk-shaped NR segment. The variation of the sidewall QW structure is explained by the condition of constituent atom supply in the gap volume between the neighboring NRs. Also, we compare the cathodoluminescence emission wavelengths among those samples of different growth conditions. Generally speaking, the QW NR with a smaller height,...
Optics Express | 2014
Yang Kuo; Hao-Tsung Chen; Wen-Yen Chang; Horng-Shyang Chen; C. C. Yang; Yean-Woei Kiang
The radiated power enhancement and more congregated radiation of a radiating dipole within a GaN material when it is coupled with the localized surface plasmon (LSP) resonance modes induced on a surface Ag nanoparticle (NP) are numerically demonstrated. The numerical study is based on an algorithm including the induction of LSP resonance on the Ag NP by the source dipole and the feedback effect of the LSP resonance field on the source dipole behavior. The spectral peaks of radiated power enhancement correspond to the substrate LSP resonance modes with mode fields mainly distributed around the bottom of the Ag NP such that the coupling system radiates mainly into the GaN half-space. By moving the radiating dipole laterally away from the bottom of the Ag NP, the spectral peaks of radiated power enhancement red shift and their levels diminish with increasing lateral distance. The radiation patterns in the GaN half-space show more congregated radiation around the vertical direction, indicating that the light extraction efficiency can be enhanced in an LSP-coupled light-emitting device with surface metal NPs.
Optics Express | 2015
Chun-Han Lin; Chia-Ying Su; Erwin Zhu; Yu-Feng Yao; Chieh Hsieh; Charng-Gan Tu; Hao-Tsung Chen; Yean-Woei Kiang; C. C. Yang
The modulation bandwidths of the light-emitting diodes (LEDs) of different mesa sizes with and without surface plasmon (SP) coupling effect are compared. Due to the significant increase of carrier decay rate, within the size range of LED square-mesa from 60 through 300 micron and the injected current-density range from 139 through 1667 A/cm², the SP coupling can lead to the enhancement of modulation bandwidth by 44-48%, independent of the variations of LED mesa size or injected current level. The enhancement ratios of modulation bandwidth of the samples with SP coupling with respect to those of the samples without SP coupling are lower than the corresponding ratios of the square-root of photoluminescence decay rate due to the increases of their RC time constants (the product of device resistance and capacitance). The increases of the RC time constants in the samples with SP coupling are attributed to the increases of their device resistance levels when the Ag nanoparticles and GaZnO dielectric interlayer are added to the LED surface for effectively inducing SP coupling.
Optics Express | 2012
Chih-Yen Chen; Chieh Hsieh; Che-Hao Liao; Wei-Lun Chung; Hao-Tsung Chen; Wenyu Cao; Wen-Ming Chang; Horng-Shyang Chen; Yu-Feng Yao; Shao-Ying Ting; Yean-Woei Kiang; C. C. Yang; Xiaodong Hu
The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.
IEEE Photonics Technology Letters | 2012
Chieh Hsieh; Horng-Shyang Chen; Che-Hao Liao; Chih-Yen Chen; Chun-Han Lin; Cheng-Hung Lin; Shao-Ying Ting; Yu-Feng Yao; Hao-Tsung Chen; Yean-Woei Kiang; C. C. Yang
A low-cost large-area effective sapphire substrate liftoff method based on the photoelectrochemical (PEC) etching technique is demonstrated. By preparing patterned sapphire substrate (PSS) with 1-D periodic grooves and an epitaxial structure with the grooves preserved to form tunnels, PEC electrolyte can flow along the tunnels to etch the bottom of the GaN layer for separating the PSS from the wafer-bonded epitaxial layer. Assisted by the device isolation procedure, the PSS liftoff of a quarter-wafer sample can be completed in 8 min. After a smoothing process of the exposed N-face surface after liftoff, a vertical light-emitting diode (LED) is fabricated for comparing its characteristics with those of a conventional LED.
Optics Express | 2014
Che-Hao Liao; Charng-Gan Tu; Wen-Ming Chang; Chia-Ying Su; Pei-Ying Shih; Hao-Tsung Chen; Yu-Feng Yao; Chieh Hsieh; Horng-Shyang Chen; Chun-Han Lin; Chih-Kang Yu; Yean-Woei Kiang; C. C. Yang
To achieve green emission from the sidewall non-polar quantum wells (QWs) of a GaN nanorod (NR) light-emitting diode, regularly patterned InGaN/GaN QW NR arrays are grown under various growth conditions of indium supply rate, QW growth temperature, and QW growth time for comparing their emission wavelength variations of the top-face c-plane and sidewall m-plane QWs based on photoluminescence and cathodoluminescence (CL) measurements. Although the variation trends of QW emission wavelength by changing those growth conditions in the NR structure are similar to those in the planar structure, the emission wavelength range of the QWs on an NR is significantly shorter than that in a planar structure under the same growth conditions. Under the growth conditions for a longer NR QW emission wavelength, the difference of emission wavelength between the top-face and sidewall QWs is smaller. Also, the variation range of the emission wavelength from the sidewall QWs over different heights on the sidewall becomes larger. On the other hand, strain state analysis based on transmission electron microscopy is undertaken to calibrate the average QW widths and average indium contents in the two groups of QW of an NR. The variation trends of the calibrated QW widths and indium contents are consistent with those of the CL emission wavelengths from various portions of NR QWs.
ACS Applied Materials & Interfaces | 2015
Yu-Feng Yao; Charng-Gan Tu; Ta-Wei Chang; Hao-Tsung Chen; Chi-Ming Weng; Chia-Ying Su; Chieh Hsieh; Che-Hao Liao; Yean-Woei Kiang; C. C. Yang
The molecular beam epitaxy growth of highly degenerate Ga-doped ZnO (GaZnO) nanoneedles (NNs) based on the vapor-liquid-solid (VLS) growth mode using Ag nanoparticles (NPs) as the growth catalyst is demonstrated. It is shown that when the growth substrate temperature is sufficiently high, a portion of a Ag NP can be melted for serving as the catalyst to precipitate GaZnO on the residual Ag NP and form a GaZnO NN. Record-low turn-on and threshold electric fields in the field emission test of the grown GaZnO NNs are observed. Also, a record-high field enhancement factor in field emission is calibrated. Such superior field emission performances are attributed to a few factors, including (1) the low work function and high conductivity of the grown GaZnO NNs due to highly degenerate Ga doping, (2) the sharp-pointed geometry of the vertically aligned GaZnO NNs, (3) the Ag doping in VLS precipitation of GaZnO for further reducing NN resistivity, and (4) the residual small Ag NP at the NN tip for making the tip even sharper and tip conductivity even higher.
Japanese Journal of Applied Physics | 2015
Yang Kuo; Chun-Han Lin; Horng-Shyang Chen; Chieh Hsieh; Charng-Gan Tu; Pei-Ying Shih; Chung-Hui Chen; Che-Hao Liao; Chia-Ying Su; Yu-Feng Yao; Hao-Tsung Chen; Yean-Woei Kiang; C. C. Yang
First, the experimental implementations and theoretical/numerical investigations of surface plasmon (SP) coupled InGaN/GaN quantum-well light-emitting diodes (LEDs) are reviewed. If the p-GaN layer in an LED can be thin, surface metal nanoparticle (NP) is an inexpensive structure for inducing effective SP coupling. When the p-GaN layer is thick, a few metal structures, including metal protrusion, buried metal NP, and embedded metal NP, can be used for effective SP coupling. In the numerical study, an algorithm, including the feedback effect of the induced SP resonance on the radiating behavior of the source dipole, has been proposed for studying the SP coupling effects with an embedded metal NP, a surface metal NP, and a metal protrusion. Then, the theoretical formulations and numerical algorithms for evaluating the radiated power enhancement in the coupling process between two radiating dipoles and the localized surface plasmon (LSP) induced on a nearby Ag NP are built. Three mechanisms are considered in the coupling process for radiated power enhancement, including the interference of the two phase-retarded radiation contributions from the two dipoles, the interaction between the two dipoles, and the LSP resonant coupling.
Optics Letters | 2014
Yu-Feng Yao; Hao-Tsung Chen; Chia-Ying Su; Chieh Hsieh; Chun-Han Lin; Yean-Woei Kiang; C. C. Yang
A light-emitting diode structure, consisting of a p-GaN layer, a CdZnO/ZnO quantum-well (QW) structure, a high-temperature-grown ZnO layer, and a GaZnO layer, is fabricated. Under forward bias, the device effectively emits green-yellow light, from the QW structure, at the rim of device mesa. Under reverse bias, electrons in the valence band of the p-GaN layer move into the conduction band of the GaZnO layer, through a QW-state-assisted tunneling process, to recombine with the injected holes in the GaZnO layer, for emitting yellow-red and shallow ultraviolet light over the entire mesa area. Also, carrier recombination in the p-GaN layer produces blue light. By properly designing the thickness of the high-temperature grown ZnO layer, the emission intensity under forward bias can be controlled such that, under alternating-current operation at 60 Hz, the spatial and spectral mixtures of the emitted lights of complementary colors, under forward and reverse biases, result in white light generation based on persistence of vision.