Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hao-Wei Chen is active.

Publication


Featured researches published by Hao-Wei Chen.


Plant Journal | 2011

Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants

Yu-Jun Hao; Wei Wei; Qingxin Song; Hao-Wei Chen; Yu-Qin Zhang; Fang Wang; Hong-Feng Zou; Gang Lei; Ai-Guo Tian; Wan-Ke Zhang; Biao Ma; Zhang J; Shou-Yi Chen

NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.


The Plant Cell | 2009

The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice

Hada Wuriyanghan; Bo Zhang; Wan-Hong Cao; Biao Ma; Gang Lei; Yun-Feng Liu; Wei Wei; Hua-Jun Wu; Li-Juan Chen; Hao-Wei Chen; Yangrong Cao; Sijie He; Wan-Ke Zhang; Xiu-Jie Wang; Shou-Yi Chen; Zhang J

Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.


Planta | 2010

Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

Yu-Jun Hao; Qingxin Song; Hao-Wei Chen; Hong-Feng Zou; Wei Wei; Xu-Sheng Kang; Biao Ma; Wan-Ke Zhang; Zhang J; Shou-Yi Chen

Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.


Plant Physiology | 2013

An S-domain receptor-like kinase OsSIK2 confers abiotic stress tolerance and delays dark-induced leaf senescence in rice

Li-Juan Chen; Hada Wuriyanghan; Yu-Qin Zhang; Kai-Xuan Duan; Hao-Wei Chen; Qing-Tian Li; Xiang Lu; Sijie He; Biao Ma; Wan-Ke Zhang; Qing Lin; Shou-Yi Chen; Zhang J

A receptor-like kinase, part of a family of proteins contributing to plant development and defense, is involved in abiotic stress and the senescence process, integrating stress signals into a developmental program for adaptive growth. Receptor-like kinases play important roles in plant development and defense responses; however, their functions in other processes remain unclear. Here, we report that OsSIK2, an S-domain receptor-like kinase from rice (Oryza sativa), is involved in abiotic stress and the senescence process. OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn2+. OsSIK2 is expressed mainly in rice leaf and sheath and can be induced by NaCl, drought, cold, dark, and abscisic acid treatment. Transgenic plants overexpressing OsSIK2 and mutant sik2 exhibit enhanced and reduced tolerance to salt and drought stress, respectively, compared with the controls. Interestingly, a truncated version of OsSIK2 without most of the extracellular region confers higher salt tolerance than the full-length OsSIK2, likely through the activation of different sets of downstream genes. Moreover, seedlings of OsSIK2-overexpressing transgenic plants exhibit early leaf development and a delayed dark-induced senescence phenotype, while mutant sik2 shows the opposite phenotype. The downstream PR-related genes specifically up-regulated by full-length OsSIK2 or the DREB-like genes solely enhanced by truncated OsSIK2 are all induced by salt, drought, and dark treatments. These results indicate that OsSIK2 may integrate stress signals into a developmental program for better adaptive growth under unfavorable conditions. Manipulation of OsSIK2 should facilitate the improvement of production in rice and other crops.


Frontiers in Plant Science | 2015

The Role of Ethylene in Plants Under Salinity Stress

Jian-Jun Tao; Hao-Wei Chen; Biao Ma; Wan-Ke Zhang; Shou-Yi Chen; Zhang J

Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.


Molecular Plant | 2013

Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation

Biao Ma; Sijie He; Kai-Xuan Duan; Cui-Cui Yin; Hui Chen; Chao Yang; Qing Xiong; Qingxin Song; Xiang Lu; Hao-Wei Chen; Wan-Ke Zhang; Tie-Gang Lu; Shou-Yi Chen; Zhang J

Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.


Plant Journal | 2011

NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis

Bo Zhang; Hao-Wei Chen; Rui-Ling Mu; Wang-Ke Zhang; Ming-Yu Zhao; Wei Wei; Fang Wang; Hui Yu; Gang Lei; Hong-Feng Zou; Biao Ma; Shou-Yi Chen; Zhang J

The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.


Scientific Reports | 2015

Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis

Zhigang Li; Hao-Wei Chen; Qing-Tian Li; Jian-Jun Tao; Xiao-Hua Bian; Biao Ma; Wan-Ke Zhang; Shou-Yi Chen; Zhang J

Ethylene perceived by a family of five receptors regulates many developmental processes in Arabidopsis. Here we conducted the yeast two-hybrid assay to screen for additional unidentified proteins that interact with subfamily II ethylene receptor ETR2. Three SAUR proteins, named SAUR76, 77 and 78, were identified to associate with both ETR2 and EIN4 in different assays. Interaction of SAUR76 and SAUR78 with ETR2 was further verified by co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays. Expressions of SAUR76-78 are induced by auxin and ethylene treatments. Compared with wild type, SAUR-overexpressing plants exhibit reduced ethylene sensitivity, while SAUR-RNAi lines exhibit enhanced ethylene sensitivity. Overexpressing the three SAURs partially complements the phenotype of subfamily II ethylene receptor loss-of-function double mutant etr2-3ein4-4, which has increased ethylene response and small cotyledon and rosette. saur76 mutation partially suppresses the reduced ethylene sensitivity of etr2-2. SAUR76/78 proteins are regulated by 26S proteasome system and larger tag increases their protein stability. These findings suggest that SAUR76-78 may affect ethylene receptor signaling and promote plant growth in Arabidopsis.


BMC Plant Biology | 2014

Trihelix transcription factor GT - 4 mediates salt tolerance via interaction with TEM2 in Arabidopsis

Xiao-Hong Wang; Qing-Tian Li; Hao-Wei Chen; Wan-Ke Zhang; Biao Ma; Shou-Yi Chen; Zhang J

BackgroundTrihelix transcription factor family is plant-specific and plays important roles in developmental processes. However, their function in abiotic stress response is largely unclear.ResultsWe studied one member GT-4 from Arabidopsis in relation to salt stress response. GT-4 expression is induced by salt stress and GT-4 protein is localized in nucleus and cytoplasm. GT-4 acts as a transcriptional activator and its C-terminal end is the activation domain. The protein can bind to the cis-elements GT-3 box, GT-3b box and MRE4. GT-4 confers enhanced salt tolerance in Arabidopsis likely through direct binding to the promoter and activation of Cor15A, in addition to possible regulation of other relevant genes. The gt-4 mutant shows salt sensitivity. TEM2, a member of AP2/ERF family was identified to interact with GT-4 in yeast two-hybrid, BiFC and Co-IP assays. Loss-of-function of TEM2 exerts no significant difference on salt tolerance or Cor15A expression in Arabidopsis. However, double mutant gt-4/tem2 shows greater sensitivity to salt stress and lower transcript level of Cor15A than gt-4 single mutant. GT-4 plus TEM2 can synergistically increase the promoter activity of Cor15A.ConclusionsGT-4 interacts with TEM2 and then co-regulates the salt responsive gene Cor15A to improve salt stress tolerance.


Plant Physiology | 2015

Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation

Jian-Jun Tao; Yangrong Cao; Hao-Wei Chen; Wei Wei; Qing-Tian Li; Biao Ma; Wan-Ke Zhang; Shou-Yi Chen; Zhang J

Translationally-controlled tumor protein binds with a class of ethylene receptors at the endoplasmic reticulum and affects protein degradation. Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.

Collaboration


Dive into the Hao-Wei Chen's collaboration.

Top Co-Authors

Avatar

Biao Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shou-Yi Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wan-Ke Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Jun Tao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing-Tian Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qingxin Song

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hong-Feng Zou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu-Qin Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge